Parameter interpretation in context

Questions that require interpreting what a parameter (like 'a' or 'k') represents in the real-world context, or relating parameters to contextual constraints like median values or percentages.

4 questions

CAIE S2 2017 June Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{332f0909-c192-40f7-88b7-7cfec2db2eef-06_428_773_260_685} The time, \(X\) minutes, taken by a large number of runners to complete a certain race has probability density function f given by $$f ( x ) = \begin{cases} \frac { k } { x ^ { 2 } } & 5 \leqslant x \leqslant 10
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant, as shown in the diagram.
  1. Without calculation, explain how you can tell that there were more runners whose times were below 7.5 minutes than above 7.5 minutes.
  2. Show that \(k = 10\).
  3. Find \(\mathrm { E } ( X )\).
  4. Find \(\operatorname { Var } ( X )\).
CAIE S2 2014 June Q5
5 The lifetime, \(X\) years, of a certain type of battery has probability density function given by $$f ( x ) = \begin{cases} \frac { k } { x ^ { 2 } } & 1 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are positive constants.
  1. State what the value of \(a\) represents in this context.
  2. Show that \(k = \frac { a } { a - 1 }\).
  3. Experience has shown that the longest that any battery of this type lasts is 2.5 years. Find the mean lifetime of batteries of this type.
CAIE S2 2018 November Q4
4 The time, \(X\) hours, taken by a large number of runners to complete a race is modelled by the probability density function given by $$f ( x ) = \begin{cases} \frac { k } { ( x + 1 ) ^ { 2 } } & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are constants.
  1. Show that \(k = \frac { a + 1 } { a }\).
  2. State what the constant \(a\) represents in this context.
    Three quarters of the runners take half an hour or less to complete the race.
  3. Find the value of \(a\).
CAIE S2 2006 November Q7
7 At a town centre car park the length of stay in hours is denoted by the random variable \(X\), which has probability density function given by $$f ( x ) = \begin{cases} k x ^ { - \frac { 3 } { 2 } } & 1 \leqslant x \leqslant 9
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Interpret the inequalities \(1 \leqslant x \leqslant 9\) in the definition of \(\mathrm { f } ( x )\) in the context of the question.
  2. Show that \(k = \frac { 3 } { 4 }\).
  3. Calculate the mean length of stay. The charge for a length of stay of \(x\) hours is \(\left( 1 - \mathrm { e } ^ { - x } \right)\) dollars.
  4. Find the length of stay for the charge to be at least 0.75 dollars
  5. Find the probability of the charge being at least 0.75 dollars.