Square root transformation (Y = √X)

Questions asking to find the PDF or CDF of Y where Y = √X or Y² = X, typically requiring the transformation formula with derivative dy/dx = 1/(2√x).

2 questions

CAIE Further Paper 4 2020 June Q3
3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( 2 - \sqrt { x } ) & 0 \leqslant x < 1
\frac { 3 } { 16 \sqrt { x } } & 1 \leqslant x \leqslant 9
0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { E } ( X )\).
    The random variable \(Y\) is such that \(Y = \sqrt { X }\).
  2. Find the probability density function of \(Y\).
CAIE FP2 2018 November Q6
6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 80 } \left( 3 \sqrt { } x - \frac { 8 } { \sqrt { } x } \right) & 4 \leqslant x \leqslant 16
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = \sqrt { } X\).
  2. Find the probability density function of \(Y\).