4. The continuous random variable, \(X\), has the following probability density function
$$f ( x ) = \begin{cases} k x & \text { for } 0 \leqslant x < 1
k x ^ { 3 } & \text { for } 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$
where \(k\) is a constant.
\includegraphics[max width=\textwidth, alt={}, center]{4ecf99c5-c4b3-41b7-a8df-a7c2ca7fcd6a-3_851_935_826_678}
- Show that \(k = \frac { 4 } { 17 }\).
- Determine \(\mathrm { E } ( X )\).
- Calculate \(\mathrm { E } ( 3 X - 1 )\) and \(\operatorname { Var } ( 3 X - 1 )\).