P(X > n) or P(X ≥ n)

Find the probability that more than n trials are needed for the first success.

5 questions

CAIE S1 2022 March Q6
6 A factory produces chocolates in three flavours: lemon, orange and strawberry in the ratio \(3 : 5 : 7\) respectively. Nell checks the chocolates on the production line by choosing chocolates randomly one at a time.
  1. Find the probability that the first chocolate with lemon flavour that Nell chooses is the 7th chocolate that she checks.
  2. Find the probability that the first chocolate with lemon flavour that Nell chooses is after she has checked at least 6 chocolates.
    'Surprise' boxes of chocolates each contain 15 chocolates: 3 are lemon, 5 are orange and 7 are strawberry. Petra has a box of Surprise chocolates. She chooses 3 chocolates at random from the box. She eats each chocolate before choosing the next one.
  3. Find the probability that none of Petra's 3 chocolates has orange flavour.
  4. Find the probability that each of Petra's 3 chocolates has a different flavour.
  5. Find the probability that at least 2 of Petra's 3 chocolates have strawberry flavour given that none of them has orange flavour.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Edexcel FS1 2021 June Q5
  1. Asha, Davinda and Jerry each have a bag containing a large number of counters, some of which are white and the rest are red.
    Each person draws counters from their bag one at a time, notes the colour of the counter and returns it to their bag.
The probability of Asha getting a red counter on any one draw is 0.07
  1. Find the probability that Asha will draw at least 3 white counters before a red counter is drawn.
  2. Find the probability that Asha gets a red counter for the second time on her 9th draw. The probability of Davinda getting a red counter on any one draw is \(p\). Davinda draws counters until she gets \(n\) red counters. The random variable \(D\) is the number of counters Davinda draws. Given that the mean and the standard deviation of \(D\) are 4400 and 660 respectively,
  3. find the value of \(p\). Jerry believes that his bag contains a smaller proportion of red counters than Asha's bag. To test his belief, Jerry draws counters from his bag until he gets a red counter. Jerry defines the random variable \(J\) to be the number of counters drawn up to and including the first red counter.
  4. Stating your hypotheses clearly and using a \(10 \%\) level of significance, find the critical region for this test. Jerry gets a red counter for the first time on his 34th draw.
  5. Giving a reason for your answer, state whether or not there is evidence that Jerry's bag contains a smaller proportion of red counters than Asha’s bag. Given that the probability of Jerry getting a red counter on any one draw is 0.011
  6. show that the power of the test is 0.702 to 3 significant figures.
OCR Further Statistics AS Specimen Q5
  1. The random variable \(X\) has the distribution \(\operatorname { Geo } ( 0.6 )\).
    (a) Find \(\mathrm { P } ( X \geq 8 )\).
    (b) Find the value of \(\mathrm { E } ( X )\).
    (c) Find the value of \(\operatorname { Var } ( X )\).
  2. The random variable \(Y\) has the distribution \(\operatorname { Geo } ( p )\). It is given that \(\mathrm { P } ( Y < 4 ) = 0.986\) correct to 3 significant figures. Use an algebraic method to find the value of \(p\). Sabrina counts the number of cars passing her house during randomly chosen one minute intervals. Two assumptions are needed for the number of cars passing her house in a fixed time interval to be well modelled by a Poisson distribution.
  3. State these two assumptions.
  4. For each assumption in part (i) give a reason why it might not be a reasonable assumption for this context. Assume now that the number of cars that pass Sabrina's house in one minute can be well modelled by the distribution \(\operatorname { Po } ( 0.8 )\).
  5. (a) Write down an expression for the probability that, in a given one minute period, exactly \(r\) cars pass Sabrina's house.
    (b) Hence find the probability that, in a given one minute period, exactly 2 cars pass Sabrina's house.
  6. Find the probability that, in a given 30 minute period, at least 28 cars pass Sabrina's house.
  7. The number of bicycles that pass Sabrina's house in a 5 minute period is a random variable with the distribution \(\operatorname { Po } ( 1.5 )\). Find the probability that, in a given 10 minute period, the total number of cars and bicycles that pass Sabrina's house is between 12 and 15 inclusive. State a necessary condition.
SPS SPS FM Statistics 2025 April Q4
4. The discrete random variable \(X\) has a geometric distribution. It is given that \(\operatorname { Var } ( X ) = 20\). Determine \(\mathrm { P } ( X \geqslant 7 )\).
OCR FS1 AS 2017 Specimen Q4
53 marks
4
  1. Four men and four women stand in a random order in a straight line. Determine the probability that no one is standing next to a person of the same gender.
  2. \(x\) men, including Mr Adam, and \(x\) women, including Mrs Adam, are arranged at random in a straight line. Show that the probability that Mr Adam is standing next to Mrs Adam is \(\frac { 1 } { X }\).
  3. The random variable \(X\) has the distribution \(\operatorname { Geo } ( 0.6 )\).
    (a) Find \(\mathrm { P } ( X \geq 8 )\).
    (b) Find the value of \(\mathrm { E } ( X )\).
    (c) Find the value of \(\operatorname { Var } ( X )\).
  4. The random variable \(Y\) has the distribution \(\operatorname { Geo } ( p )\). It is given that \(\mathrm { P } ( Y < 4 ) = 0.986\) correct to 3 significant figures. Use an algebraic method to find the value of \(p\). Sabrina counts the number of cars passing her house during randomly chosen one minute intervals. Two assumptions are needed for the number of cars passing her house in a fixed time interval to be well modelled by a Poisson distribution.
  5. State these two assumptions.
  6. For each assumption in part (i) give a reason why it might not be a reasonable assumption for this context. Assume now that the number of cars that pass Sabrina's house in one minute can be well modelled by the distribution \(\operatorname { Po } ( 0.8 )\).
  7. (a) Write down an expression for the probability that, in a given one minute period, exactly \(r\) cars pass Sabrina's house.
    (b) Hence find the probability that, in a given one minute period, exactly 2 cars pass Sabrina's house.
  8. Find the probability that, in a given 30 minute period, at least 28 cars pass Sabrina's house.
  9. The number of bicycles that pass Sabrina's house in a 5 minute period is a random variable with the distribution \(\operatorname { Po } ( 1.5 )\). Find the probability that, in a given 10 minute period, the total number of cars and bicycles that pass Sabrina's house is between 12 and 15 inclusive. State a necessary condition. 7 The discrete random variable \(X\) is equally likely to take values 0,1 and 2 . \(3 N\) observations of \(X\) are obtained, and the observed frequencies corresponding to \(X = 0 , X = 1\) and \(X = 2\) are given in the following table. \section*{2. Subject-specific Marking Instructions for AS Level Further Mathematics A} Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
    If you are in any doubt whatsoever you should contact your Team Leader.
    The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
    Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
    Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
    f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km , when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for \(g\). E marks will be lost except when results agree to the accuracy required in the question. Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
    h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader. If in any case the scheme operates with considerable unfairness consult your Team Leader. \end{table} PS = Problem Solving
    M = Modelling \section*{Summary of Updates}
    5(i)(a)
    5(i)(b)
    5(i)(c)
    5(ii)
    \begin{center} \begin{tabular}{|l|l|} \hline \multirow[t]{8}{*}{6(i)} &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline \multirow[t]{10}{*}{6(ii)} &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline