Find parameter from variance or other constraint

A question is this type if and only if it asks to find a parameter (like k, n, or a constant) given information about variance, E(aX - b), or other constraints.

2 questions

Edexcel S3 2020 October Q1
  1. The random variable \(X\) has the discrete uniform distribution
$$\mathrm { P } ( X = x ) = \frac { 1 } { \alpha } \quad \text { for } x = 1,2 , \ldots , \alpha$$ The mean of a random sample of size \(n\), taken from this distribution, is denoted by \(\bar { X }\)
  1. Show that \(2 \bar { X }\) is a biased estimator of \(\alpha\) A random sample of 6 observations of \(X\) is taken and the results are given below. $$\begin{array} { l l l l l l } 8 & 7 & 3 & 7 & 2 & 9 \end{array}$$
  2. Use the sample mean to estimate the value of \(\alpha\)
Edexcel S1 Q2
2. The discrete random variable \(X\) can take any value in the set \(\{ 1,2,3,4,5,6,7,8 \}\). Arthur, Beatrice and Chris each carry out trials to investigate the distribution of \(X\). Arthur finds that \(\mathrm { P } ( X = 1 ) = 0.125\) and that \(\mathrm { E } ( X ) = 4.5\).
Beatrice finds that \(\mathrm { P } ( X = 2 ) = \mathrm { P } ( X = 3 ) = \mathrm { P } ( X = 4 ) = p\).
Chris finds that the values of \(X\) greater than 4 are all equally likely, with each having probability \(q\).
  1. Calculate the values of \(p\) and \(q\).
  2. Give the name for the distribution of \(X\).
  3. Calculate the standard deviation of \(X\).