Calculate probabilities using independence

A question is this type if and only if it states that events are independent and asks to find probabilities of intersections, unions, or complements using the independence property.

5 questions

OCR S4 2012 June Q1
1 Independent random variables \(X\) and \(Y\) have distributions \(\mathrm { B } ( 7 , p )\) and \(\mathrm { B } ( 8 , p )\) respectively.
  1. Explain why \(X + Y \sim \mathrm {~B} ( 15 , p )\).
  2. Find \(\mathrm { P } ( X = 2 \mid X + Y = 5 )\).
Edexcel S1 2012 January Q2
  1. (a) State in words the relationship between two events \(R\) and \(S\) when \(\mathrm { P } ( R \cap S ) = 0\)
The events \(A\) and \(B\) are independent with \(\mathrm { P } ( A ) = \frac { 1 } { 4 }\) and \(\mathrm { P } ( A \cup B ) = \frac { 2 } { 3 }\) Find
(b) \(\mathrm { P } ( B )\)
(c) \(\mathrm { P } \left( A ^ { \prime } \cap B \right)\)
(d) \(\mathrm { P } \left( B ^ { \prime } \mid A \right)\)
Edexcel S1 2002 November Q3
3. The events \(A\) and \(B\) are independent such that \(\mathrm { P } ( A ) = 0.25\) and \(\mathrm { P } ( B ) = 0.30\). Find
  1. \(\mathrm { P } ( A \cap B )\),
  2. \(\mathrm { P } ( A \cup B )\),
  3. \(\mathrm { P } \left( A B ^ { \prime } \right)\).
Edexcel S1 2003 November Q4
4. Explain what you understand by
  1. a sample space,
  2. an event. Two events \(A\) and \(B\) are independent, such that \(\mathrm { P } ( A ) = \frac { 1 } { 3 }\) and \(\mathrm { P } ( B ) = \frac { 1 } { 4 }\).
    Find
  3. \(\mathrm { P } ( A \cap B )\),
  4. \(\mathrm { P } ( A B )\),
  5. \(\mathrm { P } ( A \cup B )\).
Edexcel S1 Q2
2. Events \(A\) and \(B\) are independent. Given also that $$\mathrm { P } ( A ) = \frac { 3 } { 4 } \quad \text { and } \quad \mathrm { P } \left( A \cap B ^ { \prime } \right) = \frac { 1 } { 4 }$$ Find
  1. \(\mathrm { P } ( A \cap B )\),
  2. \(\mathrm { P } ( B )\),
  3. \(\mathrm { P } \left( A ^ { \prime } \cap B ^ { \prime } \right)\).