Direct multiplication of series

Questions that require multiplying two known Maclaurin series directly (e.g., e^x cos x, (1+x) sin x, e^x ln(1+3x), sin x sin 2x sin 4x).

8 questions

CAIE Further Paper 2 2021 November Q1
1 Find the Maclaurin's series for \(e ^ { x } \tan x\) from first principles up to and including the term in \(x ^ { 2 }\).
Edexcel FP2 2004 June Q11
11. (b) Hence find the Maclaurin series expansion of \(\mathrm { e } ^ { x } \cos x\), in ascending powers of \(x\), up to and including the term in \(x ^ { 4 }\).
(Total 11 marks)
OCR FP2 2006 June Q1
1 Find the first three non-zero terms of the Maclaurin series for $$( 1 + x ) \sin x$$ simplifying the coefficients.
OCR FP2 2011 June Q5
5
  1. Prove that, if \(y = \sin ^ { - 1 } x\), then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  2. Find the Maclaurin series for \(\sin ^ { - 1 } x\), up to and including the term in \(x ^ { 3 }\).
  3. Use the result of part (ii) and the Maclaurin series for \(\ln ( 1 + x )\) to find the Maclaurin series for \(\left( \sin ^ { - 1 } x \right) \ln ( 1 + x )\), up to and including the term in \(x ^ { 4 }\).
Edexcel FP1 2020 June Q4
4. $$f ( x ) = x ^ { 4 } \sin ( 2 x )$$ Use Leibnitz's theorem to show that the coefficient of \(( x - \pi ) ^ { 8 }\) in the Taylor series expansion of \(\mathrm { f } ( x )\) about \(\pi\) is $$\frac { a \pi + b \pi ^ { 3 } } { 315 }$$ where \(a\) and \(b\) are integers to be determined. The Taylor series expansion of \(\mathrm { f } ( \mathrm { x } )\) about \(\mathrm { x } = \mathrm { k }\) is given by $$f ( x ) = f ( k ) + ( x - k ) f ^ { \prime } ( k ) + \frac { ( x - k ) ^ { 2 } } { 2 ! } f ^ { \prime \prime } ( k ) + \ldots + \frac { ( x - k ) ^ { r } } { r ! } f ^ { ( r ) } ( k ) + \ldots$$
OCR Further Pure Core 2 Specimen Q7
  1. Use the Maclaurin series for \(\sin x\) to work out the series expansion of \(\sin x \sin 2 x \sin 4 x\) up to and including the term in \(x ^ { 3 }\).
  2. Hence find, in exact surd form, an approximation to the least positive root of the equation \(2 \sin x \sin 2 x \sin 4 x = x\).
OCR Further Pure Core 2 2017 Specimen Q7
7
  1. Use the Maclaurin series for \(\sin x\) to work out the series expansion of \(\sin x \sin 2 x \sin 4 x\) up to and including the term in \(x ^ { 3 }\).
  2. Hence find, in exact surd form, an approximation to the least positive root of the equation \(2 \sin x \sin 2 x \sin 4 x = x\).
OCR FP2 Q1
1
  1. Write down and simplify the first three non-zero terms of the Maclaurin series for \(\ln ( 1 + 3 x )\).
  2. Hence find the first three non-zero terms of the Maclaurin series for $$\mathrm { e } ^ { x } \ln ( 1 + 3 x )$$ simplifying the coefficients.