Calculate variance from summary statistics

Questions that provide summary statistics like Σx, Σx², n, or mean and ask to calculate variance, standard deviation, or Σ(x - x̄)² using algebraic formulas.

14 questions

CAIE S1 2012 June Q1
1 The ages, \(x\) years, of 150 cars are summarised by \(\Sigma x = 645\) and \(\Sigma x ^ { 2 } = 8287.5\). Find \(\Sigma ( x - \bar { x } ) ^ { 2 }\), where \(\bar { x }\) denotes the mean of \(x\).
CAIE S1 2010 November Q1
1 Anita made observations of the maximum temperature, \(t ^ { \circ } \mathrm { C }\), on 50 days. Her results are summarised by \(\Sigma t = 910\) and \(\Sigma ( t - \bar { t } ) ^ { 2 } = 876\), where \(\bar { t }\) denotes the mean of the 50 observations. Calculate \(\bar { t }\) and the standard deviation of the observations.
CAIE S1 2015 November Q1
1 The time taken, \(t\) hours, to deliver letters on a particular route each day is measured on 250 working days. The mean time taken is 2.8 hours. Given that \(\Sigma ( t - 2.5 ) ^ { 2 } = 96.1\), find the standard deviation of the times taken.
OCR S1 Specimen Q1
1 Janet and John wanted to compare their daily journey times to work, so they each kept a record of their journey times for a few weeks.
  1. Janet's daily journey times, \(x\) minutes, for a period of 25 days, were summarised by \(\Sigma x = 2120\) and \(\Sigma x ^ { 2 } = 180044\). Calculate the mean and standard deviation of Janet's journey times.
  2. John's journey times had a mean of 79.7 minutes and a standard deviation of 6.22 minutes. Describe briefly, in everyday terms, how Janet and John's journey times compare.
OCR MEI S1 2008 January Q6
6 The maximum temperatures \(x\) degrees Celsius recorded during each month of 2005 in Cambridge are given in the table below.
JanFebMarAprMayJunJulAugSepOctNovDec
9.27.110.714.216.621.822.022.621.117.410.17.8
These data are summarised by \(n = 12 , \Sigma x = 180.6 , \Sigma x ^ { 2 } = 3107.56\).
  1. Calculate the mean and standard deviation of the data.
  2. Determine whether there are any outliers.
  3. The formula \(y = 1.8 x + 32\) is used to convert degrees Celsius to degrees Fahrenheit. Find the mean and standard deviation of the 2005 maximum temperatures in degrees Fahrenheit.
  4. In New York, the monthly maximum temperatures are recorded in degrees Fahrenheit. In 2005 the mean was 63.7 and the standard deviation was 16.0 . Briefly compare the maximum monthly temperatures in Cambridge and New York in 2005. The total numbers of hours of sunshine recorded in Cambridge during the month of January for each of the last 48 years are summarised below.
    Hours \(h\)\(70 \leqslant h < 100\)\(100 \leqslant h < 110\)\(110 \leqslant h < 120\)\(120 \leqslant h < 150\)\(150 \leqslant h < 170\)\(170 \leqslant h < 190\)
    Number of years681011103
  5. Draw a cumulative frequency graph for these data.
  6. Use your graph to estimate the 90th percentile.
OCR MEI S1 Q1
1 The maximum temperatures \(x\) degrees Celsius recorded during each month of 2005 in Cambridge are given in the table below.
JanFebMarAprMayJunJulAugSepOctNovDec
9.27.110.714.216.621.822.022.621.117.410.17.8
These data are summarised by \(n = 12 , \Sigma x = 180.6 , \Sigma x ^ { 2 } = 3107.56\).
  1. Calculate the mean and standard deviation of the data.
  2. Determine whether there are any outliers.
  3. The formula \(y = 1.8 x + 32\) is used to convert degrees Celsius to degrees Fahrenheit. Find the mean and standard deviation of the 2005 maximum temperatures in degrees Fahrenheit.
  4. In New York, the monthly maximum temperatures are recorded in degrees Fahrenheit. In 2005 the mean was 63.7 and the standard deviation was 16.0 . Briefly compare the maximum monthly temperatures in Cambridge and New York in 2005. The total numbers of hours of sunshine recorded in Cambridge during the month of January for each of the last 48 years are summarised below.
    Hours \(h\)\(70 \leqslant h < 100\)\(100 \leqslant h < 110\)\(110 \leqslant h < 120\)\(120 \leqslant h < 150\)\(150 \leqslant h < 170\)\(170 \leqslant h < 190\)
    Number of years681011103
  5. Draw a cumulative frequency graph for these data.
  6. Use your graph to estimate the 90th percentile.
Edexcel Paper 3 2020 October Q3
  1. Each member of a group of 27 people was timed when completing a puzzle.
The time taken, \(x\) minutes, for each member of the group was recorded.
These times are summarised in the following box and whisker plot.
\includegraphics[max width=\textwidth, alt={}, center]{2b63aa7f-bc50-4422-8dc0-e661b521c221-08_353_1436_458_319}
  1. Find the range of the times.
  2. Find the interquartile range of the times. For these 27 people \(\sum x = 607.5\) and \(\sum x ^ { 2 } = 17623.25\)
  3. calculate the mean time taken to complete the puzzle,
  4. calculate the standard deviation of the times taken to complete the puzzle. Taruni defines an outlier as a value more than 3 standard deviations above the mean.
  5. State how many outliers Taruni would say there are in these data, giving a reason for your answer. Adam and Beth also completed the puzzle in \(a\) minutes and \(b\) minutes respectively, where \(a > b\).
    When their times are included with the data of the other 27 people
    • the median time increases
    • the mean time does not change
    • Suggest a possible value for \(a\) and a possible value for \(b\), explaining how your values satisfy the above conditions.
    • Without carrying out any further calculations, explain why the standard deviation of all 29 times will be lower than your answer to part (d).
SPS SPS SM Statistics 2023 January Q5
5. Each member of a group of 27 people was timed when completing a puzzle.
The time taken, \(x\) minutes, for each member of the group was recorded.
These times are summarised in the following box and whisker plot.
\includegraphics[max width=\textwidth, alt={}, center]{f03113c4-039e-4ead-9588-b4b83fb7eea9-08_381_1557_504_264}
  1. Find the range of the times.
  2. Find the interquartile range of the times. For these 27 people \(\sum x = 607.5\) and \(\sum x ^ { 2 } = 17623.25\)
  3. calculate the mean time taken to complete the puzzle,
  4. calculate the standard deviation of the times taken to complete the puzzle. Taruni defines an outlier as a value more than 3 standard deviations above the mean.
  5. State how many outliers Taruni would say there are in these data, giving a reason for your answer. Adam and Beth also completed the puzzle in \(a\) minutes and \(b\) minutes respectively, where \(a > b\).
    When their times are included with the data of the other 27 people
    • the median time increases
    • the mean time does not change
    • Suggest a possible value for \(a\) and a possible value for \(b\), explaining how your values satisfy the above conditions.
    • Without carrying out any further calculations, explain why the standard deviation of all 29 times will be lower than your answer to part (d).
SPS SPS SM Statistics 2026 January Q2
2. Each member of a group of 27 people was timed when completing a puzzle.
The time taken, \(x\) minutes, for each member of the group was recorded.
These times are summarised in the following box and whisker plot.
\includegraphics[max width=\textwidth, alt={}, center]{fdff6575-679e-4d25-ad43-e9d343c1746f-06_346_1383_427_278}
  1. Find the range of the times.
  2. Find the interquartile range of the times. For these 27 people \(\sum x = 607.5\) and \(\sum x ^ { 2 } = 17623.25\)
  3. calculate the mean time taken to complete the puzzle,
  4. calculate the standard deviation of the times taken to complete the puzzle. Taruni defines an outlier as a value more than 3 standard deviations above the mean.
  5. State how many outliers Taruni would say there are in these data, giving a reason for your answer. Adam and Beth also completed the puzzle in \(a\) minutes and \(b\) minutes respectively, where \(a > b\).
    When their times are included with the data of the other 27 people
    • the median time increases
    • the mean time does not change
    • Suggest a possible value for \(a\) and a possible value for \(b\), explaining how your values satisfy the above conditions.
    • Without carrying out any further calculations, explain why the standard deviation of all 29 times will be lower than your answer to part (d).
AQA AS Paper 2 2018 June Q14
1 marks
14 Given that \(\sum x = 364 , \sum x ^ { 2 } = 19412 , n = 10\), find \(\sigma\), the standard deviation of \(X\). Circle your answer.
[0pt] [1 mark]
24.844 .1616 .21941 .2
AQA Paper 3 2024 June Q14
14 The annual cost of energy in 2021 for each of the 350 households in Village A can be modelled by a random variable \(\pounds X\) It is given that $$\sum x = 945000 \quad \sum x ^ { 2 } = 2607500000$$ 14
  1. Calculate the mean of \(X\). 14
  2. Calculate the standard deviation of \(X\).
    14
  3. For households in Village B the annual cost of energy in 2021 has mean \(\pounds 3100\) and standard deviation £325 Compare the annual cost of energy in 2021 for households in Village A and Village B.
AQA Further AS Paper 2 Statistics 2022 June Q2
1 marks
2 The continuous random variable \(Y\) has probability density function \(\mathrm { f } ( y )\) where $$\int _ { - \infty } ^ { \infty } y \mathrm { f } ( y ) \mathrm { d } y = 16 \text { and } \int _ { - \infty } ^ { \infty } y ^ { 2 } \mathrm { f } ( y ) \mathrm { d } y = 1040$$ Find the standard deviation of \(Y\) Circle your answer.
[0pt] [1 mark]
28
32
784
1024
SPS SPS SM Mechanics 2021 January Q4
4. Each member of a group of 27 people was timed when completing a puzzle.
The time taken, \(x\) minutes, for each member of the group was recorded.
These times are summarised in the following box and whisker plot.
\includegraphics[max width=\textwidth, alt={}, center]{d1809ec7-dccf-446b-8a1d-f04a4252ebec-08_357_1454_523_335}
  1. Find the range of the times.
  2. Find the interquartile range of the times. For these 27 people \(\sum x = 607.5\) and \(\sum x ^ { 2 } = 17623.25\)
  3. calculate the mean time taken to complete the puzzle,
  4. calculate the standard deviation of the times taken to complete the puzzle. Taruni defines an outlier as a value more than 3 standard deviations above the mean.
  5. State how many outliers Taruni would say there are in these data, giving a reason for your answer. Adam and Beth also completed the puzzle in \(a\) minutes and \(b\) minutes respectively, where \(a > b\).
    When their times are included with the data of the other 27 people
    • the median time increases
    • the mean time does not change
    • Suggest a possible value for \(a\) and a possible value for \(b\), explaining how your values satisfy the above conditions.
    • Without carrying out any further calculations, explain why the standard deviation of all 29 times will be lower than your answer to part (d).
SPS SPS SM 2021 February Q4
4. Each member of a group of 27 people was timed when completing a puzzle.
The time taken, \(x\) minutes, for each member of the group was recorded.
These times are summarised in the following box and whisker plot.
\includegraphics[max width=\textwidth, alt={}, center]{64d3256a-9007-4e8a-86d4-8375c006a4ce-06_357_1454_523_335}
  1. Find the range of the times.
  2. Find the interquartile range of the times. For these 27 people \(\sum x = 607.5\) and \(\sum x ^ { 2 } = 17623.25\)
  3. calculate the mean time taken to complete the puzzle,
  4. calculate the standard deviation of the times taken to complete the puzzle. Taruni defines an outlier as a value more than 3 standard deviations above the mean.
  5. State how many outliers Taruni would say there are in these data, giving a reason for your answer. Adam and Beth also completed the puzzle in \(a\) minutes and \(b\) minutes respectively, where \(a > b\).
    When their times are included with the data of the other 27 people
    • the median time increases
    • the mean time does not change
    • Suggest a possible value for \(a\) and a possible value for \(b\), explaining how your values satisfy the above conditions.
    • Without carrying out any further calculations, explain why the standard deviation of all 29 times will be lower than your answer to part (d).