Maclaurin series for hyperbolic inverse functions

Questions asking to find Maclaurin series by differentiation for inverse hyperbolic functions such as tanh^(-1)(x).

2 questions

OCR FP2 2011 January Q2
2 It is given that \(\mathrm { f } ( x ) = \tanh ^ { - 1 } x\).
  1. Show that \(\mathrm { f } ^ { \prime \prime \prime } ( x ) = \frac { 2 \left( 1 + 3 x ^ { 2 } \right) } { \left( 1 - x ^ { 2 } \right) ^ { 3 } }\).
  2. Hence find the Maclaurin series for \(\mathrm { f } ( x )\), up to and including the term in \(x ^ { 3 }\).
SPS SPS FM 2022 November Q6
6. It is given that \(\mathrm { f } ( x ) = \tanh ^ { - 1 } x\).
  1. Show that \(\mathrm { f } ^ { \prime \prime \prime } ( x ) = \frac { 2 \left( 1 + 3 x ^ { 2 } \right) } { \left( 1 - x ^ { 2 } \right) ^ { 3 } }\).
  2. Hence find the Maclaurin series for \(\mathrm { f } ( x )\), up to and including the term in \(x ^ { 3 }\).
    [0pt] [BLANK PAGE]