Maclaurin series for composite exponential/root functions

Questions asking to find Maclaurin series by differentiation for functions involving roots or exponentials of trigonometric/exponential expressions, such as √(a+e^x), √(a+sin x), or e^(sin x).

6 questions

Edexcel FP2 2014 June Q3
3. $$y = \sqrt { 8 + \mathrm { e } ^ { x } } , \quad x \in \mathbb { R }$$ Find the series expansion for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), giving each coefficient in its simplest form.
OCR FP2 2009 June Q3
3
  1. Given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { \sin x }\), find \(\mathrm { f } ^ { \prime } ( 0 )\) and \(\mathrm { f } ^ { \prime \prime } ( 0 )\).
  2. Hence find the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\).
AQA FP3 2008 June Q7
7
  1. Write down the expansion of \(\sin 2 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
    1. Given that \(y = \sqrt { 3 + \mathrm { e } ^ { x } }\), find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\).
    2. Using Maclaurin's theorem, show that, for small values of \(x\), $$\sqrt { 3 + \mathrm { e } ^ { x } } \approx 2 + \frac { 1 } { 4 } x + \frac { 7 } { 64 } x ^ { 2 }$$
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \sqrt { 3 + \mathrm { e } ^ { x } } - 2 } { \sin 2 x } \right]$$
AQA FP3 2009 June Q6
6 The function f is defined by $$\mathrm { f } ( x ) = ( 9 + \tan x ) ^ { \frac { 1 } { 2 } }$$
    1. Find \(f ^ { \prime \prime } ( x )\).
    2. By using Maclaurin's theorem, show that, for small values of \(x\), $$( 9 + \tan x ) ^ { \frac { 1 } { 2 } } \approx 3 + \frac { x } { 6 } - \frac { x ^ { 2 } } { 216 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { f ( x ) - 3 } { \sin 3 x } \right]$$
AQA FP3 2013 June Q6
6 It is given that \(y = ( 4 + \sin x ) ^ { \frac { 1 } { 2 } }\).
  1. Express \(y \frac { \mathrm {~d} y } { \mathrm {~d} x }\) in terms of \(\cos x\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) when \(x = 0\).
  3. Hence, by using Maclaurin's theorem, find the first four terms in the expansion, in ascending powers of \(x\), of \(( 4 + \sin x ) ^ { \frac { 1 } { 2 } }\).
    (2 marks)
OCR MEI Further Pure Core 2023 June Q4
4
    1. Given that \(\mathrm { f } ( x ) = \sqrt { 1 + 2 x }\), find \(\mathrm { f } ^ { \prime } ( x )\) and \(\mathrm { f } ^ { \prime \prime } ( x )\).
    2. Hence, find the first three terms of the Maclaurin series for \(\sqrt { 1 + 2 x }\).
  1. Hence, using a suitable value for \(x\), show that \(\sqrt { 5 } \approx \frac { 143 } { 64 }\).