Form (1+bx)^n expansion

Questions where the expression is already in the form (1+bx)^n and can be expanded directly using the binomial theorem.

12 questions

CAIE P3 2002 June Q2
2 Expand \(( 1 - 3 x ) ^ { - \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2005 June Q1
1 Expand \(( 1 + 4 x ) ^ { - \frac { 1 } { 2 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2011 June Q1
1 Expand \(\sqrt [ 3 ] { } ( 1 - 6 x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2014 June Q2
2 Expand \(( 1 + 3 x ) ^ { - \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2016 June Q2
2 Expand \(\frac { 1 } { \sqrt { ( 1 - 2 x ) } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2017 June Q2
2 Expand \(\frac { 1 } { \sqrt [ 3 ] { } ( 1 + 6 x ) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
CAIE P3 2010 November Q1
1 Expand \(( 1 + 2 x ) ^ { - 3 }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
CAIE P3 2015 November Q2
2 Given that \(\sqrt [ 3 ] { } ( 1 + 9 x ) \approx 1 + 3 x + a x ^ { 2 } + b x ^ { 3 }\) for small values of \(x\), find the values of the coefficients \(a\) and \(b\).
CAIE P3 2021 June Q1
1 Expand \(( 1 + 3 x ) ^ { \frac { 2 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
Edexcel P4 2024 January Q1
  1. Find, in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), the binomial expansion of
$$( 1 - 4 x ) ^ { - 3 } \quad | x | < \frac { 1 } { 4 }$$ fully simplifying each term.
Edexcel C4 2010 January Q1
  1. (a) Find the binomial expansion of
$$\sqrt { } ( 1 - 8 x ) , \quad | x | < \frac { 1 } { 8 }$$ in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each term.
(b) Show that, when \(x = \frac { 1 } { 100 }\), the exact value of \(\sqrt { } ( 1 - 8 x )\) is \(\frac { \sqrt { } 23 } { 5 }\).
(c) Substitute \(x = \frac { 1 } { 100 }\) into the binomial expansion in part (a) and hence obtain an approximation to \(\sqrt { } 23\). Give your answer to 5 decimal places.
OCR C4 2010 June Q1
1 Expand \(( 1 + 3 x ) ^ { - \frac { 5 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).