Non-zero terms only

Find the first n non-zero terms in an expansion where some powers of x are missing (e.g., only even powers appear).

10 questions

Edexcel C34 2014 June Q5
5. $$f ( x ) = \left( 8 + 27 x ^ { 3 } \right) ^ { \frac { 1 } { 3 } } , \quad | x | < \frac { 2 } { 3 }$$ Find the first three non-zero terms of the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\). Give each coefficient as a simplified fraction.
Edexcel P4 2022 January Q2
2. (a) Find, in ascending powers of \(x\), the first three non-zero terms of the binomial series expansion of $$\sqrt [ 3 ] { 1 + 4 x ^ { 3 } } \quad | x | < \frac { 1 } { \sqrt [ 3 ] { 4 } }$$ giving each coefficient as a simplified fraction.
(b) Use the expansion from part (a) with \(x = \frac { 1 } { 3 }\) to find a rational approximation to \(\sqrt [ 3 ] { 31 }\)
(3)
Edexcel C4 2011 June Q2
2. $$f ( x ) = \frac { 1 } { \sqrt { } \left( 9 + 4 x ^ { 2 } \right) } , \quad | x | < \frac { 3 } { 2 }$$ Find the first three non-zero terms of the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\). Give each coefficient as a simplified fraction.
Edexcel P4 2021 October Q4
4. $$\mathrm { f } ( x ) = \sqrt { 1 - 4 x ^ { 2 } } \quad | x | < \frac { 1 } { 2 }$$
  1. Find, in ascending powers of \(x\), the first four non-zero terms of the binomial expansion of \(\mathrm { f } ( x )\). Give each coefficient in simplest form.
  2. By substituting \(x = \frac { 1 } { 4 }\) into the binomial expansion of \(\mathrm { f } ( x )\), obtain an approximation for \(\sqrt { 3 }\) Give your answer to 4 decimal places.
    \includegraphics[max width=\textwidth, alt={}, center]{08756c4b-6619-42da-ac8a-2bf065c01de8-13_42_63_2606_1852}
Edexcel P4 2022 October Q4
4. $$g ( x ) = \frac { 1 } { \sqrt { 4 - x ^ { 2 } } }$$
  1. Find, in ascending powers of \(x\), the first four non-zero terms of the binomial expansion of \(\mathrm { g } ( x )\). Give each coefficient in simplest form.
  2. State the range of values of \(x\) for which this expansion is valid.
  3. Use the expansion from part (a) to find a fully simplified rational approximation for \(\sqrt { 3 }\) Show your working and make your method clear.
OCR MEI C4 Q7
4 marks
7
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 - x ^ { 2 } } }\) for \(| x | < 2\). [4]
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.
OCR MEI C4 Q9
9
  1. Find the first three non-zero terms of the binomial series expansion of \(\frac { 1 } { \sqrt { 1 + 4 x ^ { 2 } } }\), and state the set of values of \(x\) for which the expansion is valid.
  2. Hence find the first three non-zero terms of the series expansion of \(\frac { 1 - x ^ { 2 } } { \sqrt { 1 + 4 x ^ { 2 } } }\).
OCR MEI C4 Q5
4 marks
5
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 } x ^ { 2 } }\) for \(| x | < 2\). [4]
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.
OCR MEI C4 2006 January Q6
6
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 - x ^ { 2 } } }\) for \(| x | < 2\).
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.
OCR MEI C4 2008 June Q6
6
  1. Find the first three non-zero terms of the binomial series expansion of \(\frac { 1 } { \sqrt { 1 + 4 x ^ { 2 } } }\), and state the set of values of \(x\) for which the expansion is valid.
  2. Hence find the first three non-zero terms of the series expansion of \(\frac { 1 - x ^ { 2 } } { \sqrt { 1 + 4 x ^ { 2 } } }\).