Finding unknown power and constant

Given a partial expansion with unknown n and k in (1+kx)^n, use coefficient information to determine both values.

15 questions

Edexcel C34 2014 January Q6
6. Given that the binomial expansion, in ascending powers of \(x\), of $$\frac { 6 } { \sqrt { } \left( 9 + A x ^ { 2 } \right) } , \quad | x | < \frac { 3 } { \sqrt { } | A | }$$ is \(\quad B - \frac { 2 } { 3 } x ^ { 2 } + C x ^ { 4 } + \ldots\)
  1. find the values of the constants \(A , B\) and \(C\).
  2. Hence find the coefficient of \(x ^ { 6 }\)
Edexcel C4 2017 June Q2
2. \(\quad \mathrm { f } ( x ) = ( 2 + k x ) ^ { - 3 } , \quad | k x | < 2\), where \(k\) is a positive constant The binomial expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\) is $$A + B x + \frac { 243 } { 16 } x ^ { 2 }$$ where \(A\) and \(B\) are constants.
  1. Write down the value of \(A\).
  2. Find the value of \(k\).
  3. Find the value of \(B\).
Edexcel P4 2021 June Q1
  1. Given that \(k\) is a constant and the binomial expansion of
$$\sqrt { 1 + k x } \quad | k x | < 1$$ in ascending powers of \(x\) up to the term in \(x ^ { 3 }\) is $$1 + \frac { 1 } { 8 } x + A x ^ { 2 } + B x ^ { 3 }$$
    1. find the value of \(k\),
    2. find the value of the constant \(A\) and the constant \(B\).
  1. Use the expansion to find an approximate value to \(\sqrt { 1.15 }\) Show your working and give your answer to 6 decimal places.
OCR C2 Q8
8. Given that for small values of \(x\) $$( 1 + a x ) ^ { n } \approx 1 - 24 x + 270 x ^ { 2 }$$ where \(n\) is an integer and \(n > 1\),
  1. show that \(n = 16\) and find the value of \(a\),
  2. use your value of \(a\) and a suitable value of \(x\) to estimate the value of (0.9985) \({ } ^ { 16 }\), giving your answer to 5 decimal places.
OCR MEI C4 2016 June Q2
2 Given that \(\left( 1 + \frac { x } { p } \right) ^ { q } = 1 - x + \frac { 3 } { 4 } x ^ { 2 } + \ldots\), find \(p\) and \(q\), and state the set of values of \(x\) for which the expansion is valid.
OCR C4 Q3
3. The first four terms in the series expansion of \(( 1 + a x ) ^ { n }\) in ascending powers of \(x\) are $$1 - 4 x + 24 x ^ { 2 } + k x ^ { 3 }$$ where \(a , n\) and \(k\) are constants and \(| a x | < 1\).
  1. Find the values of \(a\) and \(n\).
  2. Show that \(k = - 160\).
OCR MEI C4 Q2
6 marks
2 Given the binomial expansion \(( 1 + q x ) ^ { p } = 1 - x + 2 x ^ { 2 } + \ldots\), find the values of \(p\) and \(q\). Hence state the set of values of \(x\) for which the expansion is valid. [6]
Edexcel AEA 2013 June Q1
1.In the binomial expansion of $$\left( 1 + \frac { 12 n } { 5 } x \right) ^ { n }$$ the coefficients of \(x ^ { 2 }\) and \(x ^ { 3 }\) are equal and non-zero.
(a)Find the possible values of \(n\) .
(4)
(b)State,giving a reason,which value of \(n\) gives a valid expansion when \(x = \frac { 1 } { 2 }\)
(2)
OCR C4 2016 June Q7
7 Given that the binomial expansion of \(( 1 + k x ) ^ { n }\) is \(1 - 6 x + 30 x ^ { 2 } + \ldots\), find the values of \(n\) and \(k\). State the set of values of \(x\) for which this expansion is valid.
OCR MEI C4 2012 January Q6
6 Given the binomial expansion \(( 1 + q x ) ^ { p } = 1 - x + 2 x ^ { 2 } + \ldots\), find the values of \(p\) and \(q\). Hence state the set of values of \(x\) for which the expansion is valid.
OCR MEI Paper 1 2019 June Q3
3 The function \(\mathrm { f } ( x )\) is given by \(\mathrm { f } ( x ) = ( 1 - a x ) ^ { - 3 }\), where \(a\) is a non-zero constant. In the binomial expansion of \(\mathrm { f } ( x )\), the coefficients of \(x\) and \(x ^ { 2 }\) are equal.
  1. Find the value of \(a\).
  2. Using this value for \(a\),
    1. state the set of values of \(x\) for which the binomial expansion is valid,
    2. write down the quadratic function which approximates \(\mathrm { f } ( x )\) when \(x\) is small.
Edexcel C2 Q7
7. Given that for small values of \(x\) $$( 1 + a x ) ^ { n } \approx 1 - 24 x + 270 x ^ { 2 } ,$$ where \(n\) is an integer and \(n > 1\),
  1. show that \(n = 16\) and find the value of \(a\),
  2. use your value of \(a\) and a suitable value of \(x\) to estimate the value of (0.9985) \({ } ^ { 16 }\), giving your answer to 5 decimal places.
Edexcel C4 Q6
6. When \(( 1 + a x ) ^ { n }\) is expanded as a series in ascending powers of \(x\), the coefficients of \(x\) and \(x ^ { 2 }\) are - 6 and 27 respectively.
  1. Find the value of \(a\) and the value of \(n\).
  2. Find the coefficient of \(x ^ { 3 }\).
  3. State the set of values of \(x\) for which the expansion is valid.
Edexcel C4 Q3
  1. The first four terms in the series expansion of \(( 1 + a x ) ^ { n }\) in ascending powers of \(x\) are
$$1 - 4 x + 24 x ^ { 2 } + k x ^ { 3 }$$ where \(a , n\) and \(k\) are constants and \(| a x | < 1\).
  1. Find the values of \(a\) and \(n\).
  2. Show that \(k = - 160\).
    3. continued
SPS SPS FM Pure 2024 June Q6
6. In this question you must show detailed reasoning. Given that $$( 1 + a x ) ^ { n } = 1 + 6 x - 6 x ^ { 2 } + \ldots$$ where \(a\) and \(n\) are constants, find the values of \(a\) and \(n\).
[0pt] [BLANK PAGE]