11. Given that
$$\frac { 10 ( 2 - 3 x ) } { ( 1 - 2 x ) ( 2 + x ) } \equiv \frac { A } { 1 - 2 x } + \frac { B } { 2 + x } ,$$
- find the values of the constants \(A\) and \(B\).
- Hence, or otherwise, find the series expansion in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), of \(\frac { 10 ( 2 - 3 x ) } { ( 1 - 2 x ) ( 2 + x ) }\), for \(| x | < \frac { 1 } { 2 }\).
[0pt]
[P3 January 2002 Question 3]