Partial fractions with linear factors only

Denominator factorises into distinct linear factors or repeated linear factors, no algebraic division needed, then integrate.

18 questions

OCR C4 2008 January Q2
2
  1. Express \(\frac { x } { ( x + 1 ) ( x + 2 ) }\) in partial fractions.
  2. Hence find \(\int \frac { x } { ( x + 1 ) ( x + 2 ) } \mathrm { d } x\).
OCR C4 2006 June Q3
3
  1. Express \(\frac { 3 - 2 x } { x ( 3 - x ) }\) in partial fractions.
  2. Show that \(\int _ { 1 } ^ { 2 } \frac { 3 - 2 x } { x ( 3 - x ) } \mathrm { d } x = 0\).
  3. What does the result of part (ii) indicate about the graph of \(y = \frac { 3 - 2 x } { x ( 3 - x ) }\) between \(x = 1\) and \(x = 2\) ?
OCR MEI C4 Q5
5
  1. Express \(\frac { 1 + x } { ( 1 - x ) ( 1 - 2 x ) }\) in partial fractions.
  2. Hence find \(\int _ { 2 } ^ { 3 } \frac { 1 + x } { ( 1 - x ) ( 1 - 2 x ) } \mathrm { d } x\).
OCR C4 Q9
9. $$f ( x ) = \frac { 8 - x } { ( 1 + x ) ( 2 - x ) } , \quad | x | < 1$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x = \ln k$$ where \(k\) is an integer to be found.
  3. Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
OCR C4 Q4
4. (i) Express \(\frac { 3 x + 6 } { 3 x - x ^ { 2 } }\) in partial fractions.
(ii) Evaluate \(\int _ { 1 } ^ { 2 } \frac { 3 x + 6 } { 3 x - x ^ { 2 } } \mathrm {~d} x\).
OCR C4 Q6
6. $$f ( x ) = \frac { 1 + 3 x } { ( 1 - x ) ( 1 - 3 x ) } , \quad | x | < \frac { 1 } { 3 }$$
  1. Find the values of the constants \(A\) and \(B\) such that $$\mathrm { f } ( x ) = \frac { A } { 1 - x } + \frac { B } { 1 - 3 x }$$
  2. Evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } } f ( x ) d x$$ giving your answer as a single logarithm.
  3. Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
OCR C4 Q3
3. (i) Express \(\frac { x + 11 } { ( x + 4 ) ( x - 3 ) }\) as a sum of partial fractions.
(ii) Evaluate $$\int _ { 0 } ^ { 2 } \frac { x + 11 } { ( x + 4 ) ( x - 3 ) } d x$$ giving your answer in the form \(\ln k\), where \(k\) is an exact simplified fraction.
OCR MEI C4 Q1
1 Using partial fractions, find \(\int \frac { x } { ( x + 1 ) ( 2 x + 1 ) } \mathrm { d } x\).
  1. Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
  2. Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
OCR MEI C4 2009 June Q2
7 marks
2 Using partial fractions, find \(\int \frac { x } { ( x + 1 ) ( 2 x + 1 ) } \mathrm { d } x\).
[0pt] [7]
OCR H240/02 Q4
2 marks
4
  1. Express \(\frac { 1 } { ( x - 1 ) ( x + 2 ) }\) in partial fractions
    [0pt] [2]
  2. In this question you must show detailed reasoning. Hence find \(\int _ { 2 } ^ { 3 } \frac { 1 } { ( x - 1 ) ( x + 2 ) } \mathrm { d } x\).
    Give your answer in its simplest form.
AQA C4 2015 June Q1
6 marks
1 It is given that \(\mathrm { f } ( x ) = \frac { 19 x - 2 } { ( 5 - x ) ( 1 + 6 x ) }\) can be expressed as \(\frac { A } { 5 - x } + \frac { B } { 1 + 6 x }\), where \(A\) and \(B\) are integers.
  1. Find the values of \(A\) and \(B\).
  2. Hence show that \(\int _ { 0 } ^ { 4 } \mathrm { f } ( x ) \mathrm { d } x = k \ln 5\), where \(k\) is a rational number.
    [0pt] [6 marks]
Edexcel C4 Q7
7. $$f ( x ) = \frac { 8 - x } { ( 1 + x ) ( 2 - x ) } , \quad | x | < 1$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x = \ln k$$ where \(k\) is an integer to be found.
  3. Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
    7. continued
    7. continued
Edexcel C4 Q3
  1. (a) Express \(\frac { x + 11 } { ( x + 4 ) ( x - 3 ) }\) as a sum of partial fractions.
    (b) Evaluate
$$\int _ { 0 } ^ { 2 } \frac { x + 11 } { ( x + 4 ) ( x - 3 ) } d x$$ giving your answer in the form \(\ln k\), where \(k\) is an exact simplified fraction. (5)
3. continued
SPS SPS SM Pure 2020 October Q6
6.
  1. Express \(\frac { x } { ( x + 1 ) ( x + 2 ) }\) in partial fractions.
  2. Hence find \(\int \frac { x } { ( x + 1 ) ( x + 2 ) } \mathrm { d } x\).
Edexcel C4 Q3
3. (a) Express \(\frac { 5 x + 3 } { ( 2 x - 3 ) ( x + 2 ) }\) in partial fractions.
(b) Hence find the exact value of \(\int _ { 2 } ^ { 6 } \frac { 5 x + 3 } { ( 2 x - 3 ) ( x + 2 ) } \mathrm { d } x\), giving your answer as a single logarithm.
AQA C4 2008 January Q1
1
  1. Given that \(\frac { 3 } { 9 - x ^ { 2 } }\) can be expressed in the form \(k \left( \frac { 1 } { 3 + x } + \frac { 1 } { 3 - x } \right)\), find the value of the rational number \(k\).
  2. Show that \(\int _ { 1 } ^ { 2 } \frac { 3 } { 9 - x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 2 } \ln \left( \frac { a } { b } \right)\), where \(a\) and \(b\) are integers.
AQA C4 2005 June Q2
2
  1. Express \(\frac { 3 x - 5 } { ( x + 3 ) ( 2 x - 1 ) }\) in the form \(\frac { A } { x + 3 } + \frac { B } { 2 x - 1 }\).
  2. Hence find \(\int \frac { 3 x - 5 } { ( x + 3 ) ( 2 x - 1 ) } \mathrm { d } x\).
OCR MEI Paper 3 2019 June Q3
3
  1. Express \(\frac { 1 } { ( x + 2 ) ( x + 3 ) }\) in partial fractions.
  2. Find \(\int \frac { 1 } { ( x + 2 ) ( x + 3 ) } \mathrm { d } x\) in the form \(\ln ( \mathrm { f } ( x ) ) + c\), where \(c\) is the constant of integration and \(\mathrm { f } ( x )\) is a function to be determined.