Tangent or normal to curve

Find the equation of a tangent or normal line to a curve defined by a rational function, possibly after simplification or partial fractions.

4 questions

Edexcel P3 2020 October Q9
9. (a) Given that $$\frac { x ^ { 4 } - x ^ { 3 } - 10 x ^ { 2 } + 3 x - 9 } { x ^ { 2 } - x - 12 } \equiv x ^ { 2 } + P + \frac { Q } { x - 4 } \quad x > - 3$$ find the value of the constant \(P\) and show that \(Q = 5\) The curve \(C\) has equation \(y = \mathrm { g } ( x )\), where $$g ( x ) = \frac { x ^ { 4 } - x ^ { 3 } - 10 x ^ { 2 } + 3 x - 9 } { x ^ { 2 } - x - 12 } \quad - 3 < x < 3.5 \quad x \in \mathbb { R }$$ (b) Find the equation of the tangent to \(C\) at the point where \(x = 2\) Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants to be found. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{96948fd3-5438-4e95-b41b-2f649ca8dfac-28_876_961_1055_495} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\).
The region \(R\), shown shaded in Figure 4, is bounded by \(C\), the \(y\)-axis, the \(x\)-axis and the line with equation \(x = 2\)
(c) Find the exact area of \(R\), writing your answer in the form \(a + b \ln 2\), where \(a\) and \(b\) are constants to be found. \includegraphics[max width=\textwidth, alt={}, center]{96948fd3-5438-4e95-b41b-2f649ca8dfac-31_2255_50_314_34}
VIHV SIHII NI I IIIM I ON OCVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
\includegraphics[max width=\textwidth, alt={}, center]{96948fd3-5438-4e95-b41b-2f649ca8dfac-32_106_113_2524_1832}
Edexcel C3 2011 June Q7
7. $$f ( x ) = \frac { 4 x - 5 } { ( 2 x + 1 ) ( x - 3 ) } - \frac { 2 x } { x ^ { 2 } - 9 } , \quad x \neq \pm 3 , x \neq - \frac { 1 } { 2 }$$
  1. Show that $$f ( x ) = \frac { 5 } { ( 2 x + 1 ) ( x + 3 ) }$$ The curve \(C\) has equation \(y = \mathrm { f } ( x )\). The point \(P \left( - 1 , - \frac { 5 } { 2 } \right)\) lies on \(C\).
  2. Find an equation of the normal to \(C\) at \(P\).
Edexcel C3 2016 June Q6
6. $$f ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 3 x ^ { 2 } + 7 x - 6 } { x ^ { 2 } + x - 6 } , \quad x > 2 , x \in \mathbb { R }$$
  1. Given that $$\frac { x ^ { 4 } + x ^ { 3 } - 3 x ^ { 2 } + 7 x - 6 } { x ^ { 2 } + x - 6 } \equiv x ^ { 2 } + A + \frac { B } { x - 2 }$$ find the values of the constants \(A\) and \(B\).
  2. Hence or otherwise, using calculus, find an equation of the normal to the curve with equation \(y = \mathrm { f } ( x )\) at the point where \(x = 3\)
Edexcel C3 Q5
5. $$f ( x ) = 3 - \frac { x - 1 } { x - 3 } + \frac { x + 11 } { 2 x ^ { 2 } - 5 x - 3 } , \quad x \in \mathbb { R } , \quad x < - 1$$
  1. Show that $$f ( x ) = \frac { 4 x - 1 } { 2 x + 1 }$$
  2. Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = - 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.