Partial fractions for differential equations

Use partial fractions to solve a separable differential equation, typically involving integration of both sides.

9 questions

Edexcel C4 2008 June Q7
7. (a) Express \(\frac { 2 } { 4 - y ^ { 2 } }\) in partial fractions.
(b) Hence obtain the solution of $$2 \cot x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \left( 4 - y ^ { 2 } \right)$$ for which \(y = 0\) at \(x = \frac { \pi } { 3 }\), giving your answer in the form \(\sec ^ { 2 } x = \mathrm { g } ( y )\).
OCR MEI C4 2007 January Q6
6
  1. Express \(\frac { 1 } { ( 2 x + 1 ) ( x + 1 ) }\) in partial fractions.
  2. A curve passes through the point \(( 0,2 )\) and satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y } { ( 2 x + 1 ) ( x + 1 ) }$$ Show by integration that \(y = \frac { 4 x + 2 } { x + 1 }\). Section B (36 marks)
OCR C4 2016 June Q10
10
  1. Express \(\frac { 16 + 5 x - 2 x ^ { 2 } } { ( x + 1 ) ^ { 2 } ( x + 4 ) }\) in partial fractions.
  2. It is given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \left( 16 + 5 x - 2 x ^ { 2 } \right) y } { ( x + 1 ) ^ { 2 } ( x + 4 ) }$$ and that \(y = \frac { 1 } { 256 }\) when \(x = 0\). Find the exact value of \(y\) when \(x = 2\). Give your answer in the form \(A \mathrm { e } ^ { n }\).
Edexcel Paper 2 2022 June Q14
  1. (a) Express \(\frac { 3 } { ( 2 x - 1 ) ( x + 1 ) }\) in partial fractions.
When chemical \(A\) and chemical \(B\) are mixed, oxygen is produced.
A scientist mixed these two chemicals and measured the total volume of oxygen produced over a period of time. The total volume of oxygen produced, \(V \mathrm {~m} ^ { 3 } , t\) hours after the chemicals were mixed, is modelled by the differential equation $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 3 V } { ( 2 t - 1 ) ( t + 1 ) } \quad V \geqslant 0 \quad t \geqslant k$$ where \(k\) is a constant.
Given that exactly 2 hours after the chemicals were mixed, a total volume of \(3 \mathrm {~m} ^ { 3 }\) of oxygen had been produced,
(b) solve the differential equation to show that $$V = \frac { 3 ( 2 t - 1 ) } { ( t + 1 ) }$$ The scientist noticed that
  • there was a time delay between the chemicals being mixed and oxygen being produced
  • there was a limit to the total volume of oxygen produced
Deduce from the model
(c) (i) the time delay giving your answer in minutes,
(ii) the limit giving your answer in \(\mathrm { m } ^ { 3 }\)
OCR MEI Paper 2 2018 June Q17
17
  1. Express \(\frac { \left( x ^ { 2 } - 8 x + 9 \right) } { ( x + 1 ) ( x - 2 ) ^ { 2 } }\) in partial fractions.
  2. Express \(y\) in terms of \(x\) given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y \left( x ^ { 2 } - 8 x + 9 \right) } { ( x + 1 ) ( x - 2 ) ^ { 2 } } \text { and } y = 16 \text { when } x = 3 .$$ \section*{END OF QUESTION PAPER}
AQA C4 2011 June Q8
8
  1. Express \(\frac { 1 } { ( 3 - 2 x ) ( 1 - x ) ^ { 2 } }\) in the form \(\frac { A } { 3 - 2 x } + \frac { B } { 1 - x } + \frac { C } { ( 1 - x ) ^ { 2 } }\).
    (4 marks)
  2. Solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 \sqrt { y } } { ( 3 - 2 x ) ( 1 - x ) ^ { 2 } }$$ where \(y = 0\) when \(x = 0\), expressing your answer in the form $$y ^ { p } = q \ln [ \mathrm { f } ( x ) ] + \frac { x } { 1 - x }$$ where \(p\) and \(q\) are constants.
AQA C4 2014 June Q8
7 marks
8
  1. Express \(\frac { 16 x } { ( 1 - 3 x ) ( 1 + x ) ^ { 2 } }\) in the form \(\frac { A } { 1 - 3 x } + \frac { B } { 1 + x } + \frac { C } { ( 1 + x ) ^ { 2 } }\).
  2. Solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 16 x \mathrm { e } ^ { 2 y } } { ( 1 - 3 x ) ( 1 + x ) ^ { 2 } }$$ where \(y = 0\) when \(x = 0\).
    Give your answer in the form \(\mathrm { f } ( y ) = \mathrm { g } ( x )\).
    [0pt] [7 marks]
SPS SPS FM Pure 2023 September Q12
12.
  1. Express \(\frac { 16 + 5 x - 2 x ^ { 2 } } { ( x + 1 ) ^ { 2 } ( x + 4 ) }\) in partial fractions.
  2. It is given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \left( 16 + 5 x - 2 x ^ { 2 } \right) y } { ( x + 1 ) ^ { 2 } ( x + 4 ) }$$ and that \(y = \frac { 1 } { 256 }\) when \(x = 0\). Find the exact value of \(y\) when \(x = 2\). Give your answer in the form \(A e ^ { n }\).
    [0pt] [BLANK PAGE]
AQA C4 2008 June Q6
6
  1. Express \(\frac { 2 } { x ^ { 2 } - 1 }\) in the form \(\frac { A } { x - 1 } + \frac { B } { x + 1 }\).
  2. Hence find \(\int \frac { 2 } { x ^ { 2 } - 1 } \mathrm {~d} x\).
  3. Solve the differential equation \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y } { 3 \left( x ^ { 2 } - 1 \right) }\), given that \(y = 1\) when \(x = 3\). Show that the solution can be written as \(y ^ { 3 } = \frac { 2 ( x - 1 ) } { x + 1 }\).