Sigma notation evaluation

Evaluate a sum given in sigma notation, either by recognizing it as an arithmetic series or computing term by term.

30 questions · Moderate -0.9

Sort by: Default | Easiest first | Hardest first
Edexcel C12 2014 June Q9
7 marks Moderate -0.8
9. (i) Find the value of \(\sum _ { r = 1 } ^ { 20 } ( 3 + 5 r )\) (ii) Given that \(\sum _ { r = 0 } ^ { \infty } \frac { a } { 4 ^ { r } } = 16\), find the value of the constant \(a\).
Edexcel C1 2014 January Q5
5 marks Moderate -0.8
5. Given that for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } a _ { r } = 12 + 4 n ^ { 2 }$$
  1. find the value of \(\sum _ { r = 1 } ^ { 5 } a _ { r }\)
  2. Find the value of \(a _ { 6 }\)
OCR MEI C2 2006 January Q2
2 marks Easy -1.8
2 Find the numerical value of \(\sum _ { k = 2 } ^ { 5 } k ^ { 3 }\).
OCR MEI C2 2009 June Q3
3 marks Moderate -0.8
3
  1. Find \(\sum _ { k = 3 } ^ { 8 } \left( k ^ { 2 } - 1 \right)\).
  2. State whether the sequence with \(k\) th term \(k ^ { 2 } - 1\) is convergent or divergent, giving a reason for your answer.
OCR C2 Q7
10 marks Moderate -0.3
7. (a) Evaluate $$\sum _ { r = 10 } ^ { 30 } ( 7 + 2 r )$$ (b) (i) Write down the formula for the sum of the first \(n\) positive integers.
(ii) Using this formula, find the sum of the integers from 100 to 200 inclusive.
(iii) Hence, find the sum of the integers between 300 and 600 inclusive which are divisible by 3 .
OCR C2 Q3
7 marks Moderate -0.8
  1. (i) Evaluate
$$\sum _ { r = 1 } ^ { 50 } ( 80 - 3 r )$$ (ii) Show that $$\sum _ { r = 1 } ^ { n } \frac { r + 3 } { 2 } = k n ( n + 7 )$$ where \(k\) is a rational constant to be found.
OCR MEI C2 Q3
5 marks Moderate -0.8
3
  1. Find \(\sum _ { r = 1 } ^ { 5 } \frac { 21 } { r + 2 }\).
  2. A sequence is defined by $$\begin{aligned} u _ { 1 } & = a , \text { where } a \text { is an unknown constant, } \\ u _ { n + 1 } & = u _ { n } + 5 . \end{aligned}$$ Find, in terms of \(a\), the tenth term and the sum of the first ten terms of this sequence.
OCR MEI C2 Q7
4 marks Easy -1.3
7
  1. Evaluate \(\sum _ { r = 2 } ^ { 5 } \frac { 1 } { r - 1 }\).
  2. Express the series \(2 \times 3 + 3 \times 4 + 4 \times 5 + 5 \times 6 + 6 \times 7\) in the form \(\sum _ { r = 2 } ^ { a } \mathrm { f } ( r )\) where \(\mathrm { f } ( r )\) and \(a\) are to be determined.
OCR MEI C2 Q8
3 marks Moderate -0.8
8
  1. Find \(\sum _ { k = 3 } ^ { 8 } \left( k ^ { 2 } - 1 \right)\).
  2. State whether the sequence with \(k\) th term \(k ^ { 2 } - 1\) is convergent or divergent, giving a reason for your answer.
OCR MEI C2 Q11
2 marks Easy -1.2
11 Find \(\sum _ { r = 3 } ^ { 6 } r ( r + 2 )\).
OCR MEI C2 Q1
2 marks Easy -1.2
1 Find \(\sum _ { k = 1 } ^ { 5 } \frac { 1 } { 1 + k }\).
OCR MEI C2 Q5
2 marks Easy -1.8
5 Find the numerical value of \(\sum _ { k = 2 } ^ { 5 } k ^ { 3 }\).
OCR MEI C2 2009 January Q3
2 marks Easy -1.8
3 Find \(\sum _ { k = 1 } ^ { 5 } \frac { 1 } { 1 + k }\).
OCR MEI C2 2011 January Q1
2 marks Easy -1.2
1 Calculate \(\sum _ { r = 3 } ^ { 6 } \frac { 12 } { r }\).
OCR MEI C2 2012 January Q1
2 marks Easy -1.2
1 Find \(\sum _ { r = 3 } ^ { 6 } r ( r + 2 )\).
OCR MEI C2 2014 June Q1
3 marks Moderate -0.8
1 Find \(\int 7 x ^ { \frac { 5 } { 2 } } \mathrm {~d} x\).
  1. Find \(\sum _ { r = 1 } ^ { 5 } \frac { 21 } { r + 2 }\).
  2. A sequence is defined by $$\begin{aligned} u _ { 1 } & = a , \text { where } a \text { is an unknown constant, } \\ u _ { n + 1 } & = u _ { n } + 5 . \end{aligned}$$ Find, in terms of \(a\), the tenth term and the sum of the first ten terms of this sequence.
Edexcel PMT Mocks Q4
7 marks Standard +0.3
4. (a) Show that \(\sum _ { r = 1 } ^ { 20 } \left( 2 ^ { r - 1 } - 3 - 4 r \right) = 1047675\) (b) A sequence has \(n\)th term \(u _ { n } = \sin \left( 90 n ^ { \circ } \right) n \geq 1\)
  1. Find the order of the sequence.
  2. Find \(\sum _ { r = 1 } ^ { 222 } u _ { r }\)
Edexcel PMT Mocks Q4
6 marks Standard +0.3
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 }\) is defined by
$$a _ { n } = \sin ^ { 2 } \left( \frac { n \pi } { 3 } \right)$$ Find the exact values of
a. i) \(a _ { 1 }\) ii) \(a _ { 2 }\) iii) \(a _ { 3 }\) b. Hence find the exact value of $$\sum _ { n = 1 } ^ { 100 } \left\{ n + \sin ^ { 2 } \left( \frac { n \pi } { 3 } \right) \right\}$$
OCR MEI Paper 3 2020 November Q1
2 marks Easy -1.2
1 Find the value of \(\sum _ { r = 1 } ^ { 5 } 2 ^ { r } ( r - 1 )\).
OCR MEI Paper 3 2021 November Q6
4 marks Moderate -0.8
6 In this question you must show detailed reasoning.
Show that \(\sum _ { r = 1 } ^ { 3 } \frac { 1 } { \sqrt { r + 1 } + \sqrt { r } } = 1\).
Edexcel C1 Q2
6 marks Easy -1.2
2. The sum of an arithmetic series is $$\sum _ { r = 1 } ^ { n } ( 80 - 3 r ) .$$
  1. Write down the first two terms of the series.
  2. Find the common difference of the series. Given that \(n = 50\),
  3. find the sum of the series.
Edexcel C1 Q1
3 marks Easy -1.2
  1. Evaluate
$$\sum _ { r = 1 } ^ { 30 } ( 3 r + 4 ) .$$
Edexcel C1 Q6
7 marks Moderate -0.5
  1. (a) Evaluate
$$\sum _ { r = 1 } ^ { 50 } ( 80 - 3 r )$$ (b) Show that $$\sum _ { r = 1 } ^ { n } \frac { r + 3 } { 2 } = k n ( n + 7 )$$ where \(k\) is a rational constant to be found.
Edexcel C2 Q4
7 marks Moderate -0.8
4
4
\end{tabular} &
\hline \begin{tabular}{l}
Edexcel C2 Q5
8 marks Moderate -0.8
5
5
\end{tabular} &
\hline \begin{tabular}{l}