Combined expansions then integrate

Questions that require expanding multiple binomial expressions, combining them algebraically (addition or subtraction), and then integrating the simplified result.

4 questions

AQA C2 2011 January Q5
5
  1. Using the binomial expansion, or otherwise, express \(( 1 - x ) ^ { 3 }\) in ascending powers of \(x\).
  2. Show that the expansion of $$( 1 + y ) ^ { 4 } - ( 1 - y ) ^ { 3 }$$ is $$7 y + p y ^ { 2 } + q y ^ { 3 } + y ^ { 4 }$$ where \(p\) and \(q\) are constants to be found.
  3. Hence find \(\int \left[ ( 1 + \sqrt { x } ) ^ { 4 } - ( 1 - \sqrt { x } ) ^ { 3 } \right] \mathrm { d } x\), expressing each coefficient in its simplest form.
AQA C2 2013 June Q3
3
    1. Using the binomial expansion, or otherwise, express \(( 2 + y ) ^ { 3 }\) in the form \(a + b y + c y ^ { 2 } + y ^ { 3 }\), where \(a , b\) and \(c\) are integers.
    2. Hence show that \(\left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 }\) can be expressed in the form \(p + q x ^ { - 4 }\), where \(p\) and \(q\) are integers.
    1. Hence find \(\int \left[ \left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 } \right] \mathrm { d } x\).
    2. Hence find the value of \(\int _ { 1 } ^ { 2 } \left[ \left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 } \right] \mathrm { d } x\).
SPS SPS SM Pure 2021 September Q2
2. (a) (i) Using the binomial expansion, or otherwise, express \(( 2 + y ) ^ { 3 }\) in the form \(a + b y + c y ^ { 2 } + y ^ { 3 }\), where \(a , b\) and \(c\) are integers.
(ii) Hence show that \(\left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 }\) can be expressed in the form \(p + q x ^ { - 4 }\), where \(p\) and \(q\) are integers.
(b) (i) Hence find \(\int \left[ \left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 } \right] \mathrm { d } x\).
AQA Paper 2 2022 June Q5
2 marks
5 The binomial expansion of \(( 2 + 5 x ) ^ { 4 }\) is given by $$( 2 + 5 x ) ^ { 4 } = A + 160 x + B x ^ { 2 } + 1000 x ^ { 3 } + 625 x ^ { 4 }$$ 5
  1. Find the value of \(A\) and the value of \(B\).
    [0pt] [2 marks]
    L
    5
  2. Show that $$( 2 + 5 x ) ^ { 4 } - ( 2 - 5 x ) ^ { 4 } = C x + D x ^ { 3 }$$ where \(C\) and \(D\) are constants to be found.
    5
  3. Hence, or otherwise, find $$\int \left( ( 2 + 5 x ) ^ { 4 } - ( 2 - 5 x ) ^ { 4 } \right) \mathrm { d } x$$