Single binomial expansion

Questions asking for the constant term in a single binomial expansion of the form (ax^p + b/x^q)^n.

15 questions

CAIE P1 2014 June Q3
3 Find the term independent of \(x\) in the expansion of \(\left( 4 x ^ { 3 } + \frac { 1 } { 2 x } \right) ^ { 8 }\).
CAIE P1 2016 June Q1
1 Find the term independent of \(x\) in the expansion of \(\left( x - \frac { 3 } { 2 x } \right) ^ { 6 }\).
CAIE P1 2002 November Q1
1 Find the value of the term which is independent of \(x\) in the expansion of \(\left( x + \frac { 3 } { x } \right) ^ { 4 }\).
CAIE P1 2010 November Q1
1 Find the term independent of \(x\) in the expansion of \(\left( x - \frac { 1 } { x ^ { 2 } } \right) ^ { 9 }\).
CAIE P1 2011 November Q1
1 Find the term independent of \(x\) in the expansion of \(\left( 2 x + \frac { 1 } { x ^ { 2 } } \right) ^ { 6 }\).
CAIE P1 2016 November Q2
2 Find the term independent of \(x\) in the expansion of \(\left( 2 x + \frac { 1 } { 2 x ^ { 3 } } \right) ^ { 8 }\).
CAIE P1 2017 November Q1
1 Find the term independent of \(x\) in the expansion of \(\left( 2 x - \frac { 1 } { 4 x ^ { 2 } } \right) ^ { 9 }\).
CAIE P1 2019 November Q1
1 Find the term independent of \(x\) in the expansion of \(\left( 2 x + \frac { 1 } { 4 x ^ { 2 } } \right) ^ { 6 }\).
OCR MEI C1 Q3
3 Find the term independent of \(x\) in the expansion of \(\left( x - \frac { 2 } { x } \right) ^ { 4 }\).
OCR MEI C1 Q4
4 The binomial expansion of \(\left( 2 x + \frac { 5 } { x } \right) ^ { 6 }\) has a term which is a constant. Find this term.
OCR MEI C1 2013 January Q6
6 The binomial expansion of \(\left( 2 x + \frac { 5 } { x } \right) ^ { 6 }\) has a term which is a constant. Find this term.
OCR MEI Paper 3 2018 June Q6
6 Find the constant term in the expansion of \(\left( x ^ { 2 } + \frac { 1 } { x } \right) ^ { 15 }\).
Edexcel C2 Q2
  1. find the first 4 terms, simplifying each term.
  2. Find, in its simplest form, the term independent of \(x\) in this expansion.
    [0pt] [P2 June 2004 Question 3] \item The curve \(C\) has equation \(y = \cos \left( x + \frac { \pi } { 4 } \right) , 0 \leq x \leq 2 \pi\).
  3. Sketch \(C\).
  4. Write down the exact coordinates of the points at which \(C\) meets the coordinate axes.
  5. Solve, for \(x\) in the interval \(0 \leq x \leq 2 \pi , \cos \left( x + \frac { \pi } { 4 } \right) = 0.5\), giving your answers in terms of \(\pi\). \item Given that \(\log _ { 2 } x = a\), find, in terms of \(a\), the simplest form of
  6. \(\log _ { 2 } ( 16 x )\),
  7. \(\log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right)\).
  8. Hence, or otherwise, solve \(\log _ { 2 } ( 16 x ) - \log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right) = \frac { 1 } { 2 }\), giving your answer in its simplest surd form. \item (a) Given that \(3 \sin x = 8 \cos x\), find the value of \(\tan x\).
  9. Find, to 1 decimal place, all the solutions of \(3 \sin x - 8 \cos x = 0\) in the interval \(0 \leq x < 360 ^ { \circ }\).
  10. Find, to 1 decimal place, all the solutions of \(3 \sin ^ { 2 } y - 8 \cos y = 0\) in the interval \(0 \leq y < 360 ^ { \circ }\). \item \end{enumerate} $$f ( x ) = \frac { \left( x ^ { 2 } - 3 \right) ^ { 2 } } { x ^ { 3 } } , x \neq 0$$
  11. Show that \(\mathrm { f } ( x ) \equiv x - 6 x ^ { - 1 } + 9 x ^ { - 3 }\).
  12. Hence, or otherwise, differentiate \(\mathrm { f } ( x )\) with respect to \(x\).
  13. Verify that the graph of \(y = \mathrm { f } ( x )\) has stationary points at \(x = \pm \sqrt { } 3\).
  14. Determine whether the stationary value at \(x = \sqrt { } 3\) is a maximum or a minimum.
SPS SPS FM 2025 October Q5
5. In this question you must show detailed reasoning. Consider the expansion of \(\left( \frac { x ^ { 2 } } { 2 } + \frac { a } { x } \right) ^ { 6 }\). The constant term is 960 .
Find the possible values of \(a\).
[0pt] [BLANK PAGE]
AQA Paper 3 2021 June Q4
4
  1. Show that the first three terms, in descending powers of \(x\), of the expansion of $$( 2 x - 3 ) ^ { 10 }$$ are given by $$1024 x ^ { 10 } + p x ^ { 9 } + q x ^ { 8 }$$ where \(p\) and \(q\) are integers to be found.
    4
  2. Find the constant term in the expansion of $$\left( 2 x - \frac { 3 } { x } \right) ^ { 10 }$$