Find tangent equation at point

A question is this type if and only if it asks to find the equation of the tangent line to an implicitly defined curve at a specific point.

34 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
CAIE P2 2020 March Q4
6 marks Standard +0.3
4 A curve has equation $$3 x ^ { 2 } - y ^ { 2 } - 4 \ln ( 2 y + 3 ) = 26$$ Find the equation of the tangent to the curve at the point \(( 3 , - 1 )\).
CAIE P2 2010 June Q6
7 marks Standard +0.3
6 The equation of a curve is $$x ^ { 2 } y + y ^ { 2 } = 6 x$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 - 2 x y } { x ^ { 2 } + 2 y }\).
  2. Find the equation of the tangent to the curve at the point with coordinates ( 1,2 ), giving your answer in the form \(a x + b y + c = 0\).
CAIE P2 2011 June Q5
6 marks Moderate -0.3
5 A curve has equation \(x ^ { 2 } + 2 y ^ { 2 } + 5 x + 6 y = 10\). Find the equation of the tangent to the curve at the point \(( 2 , - 1 )\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
[0pt] [6]
CAIE P2 2018 June Q5
6 marks Standard +0.3
5 A curve has equation $$y ^ { 3 } \sin 2 x + 4 y = 8$$ Find the equation of the tangent to the curve at the point where it crosses the \(y\)-axis.
CAIE P3 2010 June Q6
8 marks Moderate -0.3
6 The equation of a curve is $$x \ln y = 2 x + 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { y } { x ^ { 2 } }\).
  2. Find the equation of the tangent to the curve at the point where \(y = 1\), giving your answer in the form \(a x + b y + c = 0\).
CAIE P3 2003 November Q4
6 marks Standard +0.3
4 The equation of a curve is $$\sqrt { } x + \sqrt { } y = \sqrt { } a$$ where \(a\) is a positive constant.
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. The straight line with equation \(y = x\) intersects the curve at the point \(P\). Find the equation of the tangent to the curve at \(P\).
CAIE P3 2009 November Q3
6 marks Standard +0.3
3 The equation of a curve is \(x ^ { 3 } - x ^ { 2 } y - y ^ { 3 } = 3\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the equation of the tangent to the curve at the point \(( 2,1 )\), giving your answer in the form \(a x + b y + c = 0\).
CAIE P2 2005 November Q4
7 marks Standard +0.3
4 The equation of a curve is \(x ^ { 3 } + y ^ { 3 } = 9 x y\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 y - x ^ { 2 } } { y ^ { 2 } - 3 x }\).
  2. Find the equation of the tangent to the curve at the point ( 2,4 ), giving your answer in the form \(a x + b y = c\).
CAIE P2 2017 November Q7
10 marks Standard +0.3
7 The equation of a curve is \(x ^ { 2 } + 4 x y + 2 y ^ { 2 } = 7\).
  1. Find the equation of the tangent to the curve at the point \(( - 1,3 )\). Give your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
  2. Show that there is no point on the curve at which the gradient is \(\frac { 1 } { 2 }\).
Edexcel P3 2018 Specimen Q7
7 marks Standard +0.3
  1. The point \(P\) lies on the curve with equation
$$x = ( 4 y - \sin 2 y ) ^ { 2 }$$ Given that \(P\) has \(( x , y )\) coordinates \(\left( p , \frac { \pi } { 2 } \right)\), where \(p\) is a constant,
  1. find the exact value of \(p\) The tangent to the curve at \(P\) cuts the \(y\)-axis at the point \(A\).
  2. Use calculus to find the coordinates of \(A\).
Edexcel C34 2014 January Q5
9 marks Standard +0.3
  1. (a) Prove, by using logarithms, that
$$\frac { \mathrm { d } } { \mathrm {~d} x } \left( 2 ^ { x } \right) = 2 ^ { x } \ln 2$$ The curve \(C\) has the equation $$2 x + 3 y ^ { 2 } + 3 x ^ { 2 } y + 12 = 4 \times 2 ^ { x }$$ The point \(P\), with coordinates \(( 2,0 )\), lies on \(C\).
(b) Find an equation of the tangent to \(C\) at \(P\).
Edexcel C34 2017 January Q1
6 marks Standard +0.3
  1. Find an equation of the tangent to the curve
$$x ^ { 3 } + 3 x ^ { 2 } y + y ^ { 3 } = 37$$ at the point \(( 1,3 )\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
(6)
Edexcel C34 2014 June Q2
6 marks Standard +0.3
2. A curve \(C\) has the equation $$x ^ { 3 } - 3 x y - x + y ^ { 3 } - 11 = 0$$ Find an equation of the tangent to \(C\) at the point \(( 2 , - 1 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C34 2017 June Q1
6 marks Moderate -0.3
  1. A curve \(C\) has equation
$$3 x ^ { 2 } + 2 x y - 2 y ^ { 2 } + 4 = 0$$ Find an equation for the tangent to \(C\) at the point ( 2,4 ), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
(6)
Edexcel C3 2009 January Q4
6 marks Standard +0.3
4. Find the equation of the tangent to the curve \(x = \cos ( 2 y + \pi )\) at \(\left( 0 , \frac { \pi } { 4 } \right)\). Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants to be found.
Edexcel C3 2014 June Q3
8 marks Standard +0.3
3. The curve \(C\) has equation \(x = 8 y \tan 2 y\) The point \(P\) has coordinates \(\left( \pi , \frac { \pi } { 8 } \right)\)
  1. Verify that \(P\) lies on \(C\).
  2. Find the equation of the tangent to \(C\) at \(P\) in the form \(a y = x + b\), where the constants \(a\) and \(b\) are to be found in terms of \(\pi\).
Edexcel C3 2015 June Q5
7 marks Standard +0.3
5. The point \(P\) lies on the curve with equation $$x = ( 4 y - \sin 2 y ) ^ { 2 }$$ Given that \(P\) has \(( x , y )\) coordinates \(\left( p , \frac { \pi } { 2 } \right)\), where \(p\) is a constant,
  1. find the exact value of \(p\). The tangent to the curve at \(P\) cuts the \(y\)-axis at the point \(A\).
  2. Use calculus to find the coordinates of \(A\).
Edexcel P4 2022 January Q1
6 marks Standard +0.3
  1. The curve \(C\) has equation
$$x y ^ { 2 } = x ^ { 2 } y + 6 \quad x \neq 0 \quad y \neq 0$$ Find an equation for the tangent to \(C\) at the point \(P ( 2,3 )\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
(6)
Edexcel C4 2006 January Q1
7 marks Standard +0.3
  1. A curve \(C\) is described by the equation
$$3 x ^ { 2 } + 4 y ^ { 2 } - 2 x + 6 x y - 5 = 0$$ Find an equation of the tangent to \(C\) at the point \(( 1 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C4 2010 January Q3
9 marks Standard +0.3
  1. The curve \(C\) has the equation
$$\cos 2 x + \cos 3 y = 1 , \quad - \frac { \pi } { 4 } \leqslant x \leqslant \frac { \pi } { 4 } , \quad 0 \leqslant y \leqslant \frac { \pi } { 6 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). The point \(P\) lies on \(C\) where \(x = \frac { \pi } { 6 }\).
  2. Find the value of \(y\) at \(P\).
  3. Find the equation of the tangent to \(C\) at \(P\), giving your answer in the form \(a x + b y + c \pi = 0\), where \(a , b\) and \(c\) are integers. \section*{LU}
Edexcel C4 2014 June Q1
7 marks Standard +0.3
  1. A curve \(C\) has the equation
$$x ^ { 3 } + 2 x y - x - y ^ { 3 } - 20 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an equation of the tangent to \(C\) at the point \(( 3 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C4 2014 June Q4
5 marks Moderate -0.3
4
4
\end{tabular}}
\hline 5 &
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Edexcel C4 2014 June Q6
12 marks Moderate -0.3
6
6
\end{tabular}}
\hline 7 &
\hline 8 &
\hline &
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline Total &
\hline \end{tabular} \end{center} Turn over
  1. A curve \(C\) has the equation
$$x ^ { 3 } + 2 x y - x - y ^ { 3 } - 20 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an equation of the tangent to \(C\) at the point \(( 3 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    2. Given that the binomial expansion of \(( 1 + k x ) ^ { - 4 } , | k x | < 1\), is $$1 - 6 x + A x ^ { 2 } + \ldots$$
  3. find the value of the constant \(k\),
  4. find the value of the constant \(A\), giving your answer in its simplest form.
    3. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a9963b13-7db4-4a1d-8c75-829f4aade994-05_659_865_269_550} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \frac { 10 } { 2 x + 5 \sqrt { } x } , x > 0\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis, and the lines with equations \(x = 1\) and \(x = 4\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 10 } { 2 x + 5 \sqrt { } x }\)
    \(x\)1234
    \(y\)1.428570.903260.55556
  5. Complete the table above by giving the missing value of \(y\) to 5 decimal places.
  6. Use the trapezium rule, with all the values of \(y\) in the completed table, to find an estimate for the area of \(R\), giving your answer to 4 decimal places.
  7. By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of \(R\).
  8. Use the substitution \(u = \sqrt { } x\), or otherwise, to find the exact value of $$\int _ { 1 } ^ { 4 } \frac { 10 } { 2 x + 5 \sqrt { x } } d x$$ 4. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a9963b13-7db4-4a1d-8c75-829f4aade994-07_618_703_246_625} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} A vase with a circular cross-section is shown in Figure 2. Water is flowing into the vase. When the depth of the water is \(h \mathrm {~cm}\), the volume of water \(V \mathrm {~cm} ^ { 3 }\) is given by $$V = 4 \pi h ( h + 4 ) , \quad 0 \leqslant h \leqslant 25$$ Water flows into the vase at a constant rate of \(80 \pi \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) Find the rate of change of the depth of the water, in \(\mathrm { cms } ^ { - 1 }\), when \(h = 6\) 5. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a9963b13-7db4-4a1d-8c75-829f4aade994-08_675_1262_267_340} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 4 \cos \left( t + \frac { \pi } { 6 } \right) , \quad y = 2 \sin t , \quad 0 \leqslant t < 2 \pi$$
  9. Show that $$x + y = 2 \sqrt { 3 } \cos t$$
  10. Show that a cartesian equation of \(C\) is $$( x + y ) ^ { 2 } + a y ^ { 2 } = b$$ where \(a\) and \(b\) are integers to be determined. \includegraphics[max width=\textwidth, alt={}, center]{a9963b13-7db4-4a1d-8c75-829f4aade994-09_104_51_2617_1900}
    6. (i) Find $$\int x \mathrm { e } ^ { 4 x } \mathrm {~d} x$$ (ii) Find $$\int \frac { 8 } { ( 2 x - 1 ) ^ { 3 } } \mathrm {~d} x , \quad x > \frac { 1 } { 2 }$$ (iii) Given that \(y = \frac { \pi } { 6 }\) at \(x = 0\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { x } \operatorname { cosec } 2 y \operatorname { cosec } y$$
Edexcel P4 2018 Specimen Q2
7 marks Standard +0.3
2. A curve \(C\) has the equation $$x ^ { 3 } + 2 x y - x - y ^ { 3 } - 20 = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an equation of the tangent to \(C\) at the point \(( 3 , - 2 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    VIII SIHI NI I IIIM I O N OCVIIN SIHI NI JIHMM ION OOVI4V SIHI NI JIIYM ION OO
OCR C3 Q3
6 marks Moderate -0.3
3. A curve has the equation \(x = y ^ { 2 } - 3 \ln 2 y\).
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y } { 2 y ^ { 2 } - 3 }$$
  2. Find an equation for the tangent to the curve at the point where \(y = \frac { 1 } { 2 }\). Give your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.