6 A mathematics examination is taken by 29 boys and 26 girls. Experience has shown that the probability that any boy forgets to bring a calculator to the examination is 0.3 , and that any girl forgets is 0.2 . Whether or not any student forgets to bring a calculator is independent of all other students. The numbers of boys and girls who forget to bring a calculator are denoted by \(B\) and \(G\) respectively, and \(F = B + G\).
- Find \(\mathrm { E } ( F )\) and \(\operatorname { Var } ( F )\).
- Using suitable approximations to the distributions of \(B\) and \(G\), which should be justified, find the smallest number of spare calculators that should be available in order to be at least \(99 \%\) certain that all 55 students will have a calculator.