Compare estimator properties

A question is this type if and only if it asks to compare two or more estimators based on bias, variance, or efficiency criteria.

1 questions

Edexcel S4 2002 June Q3
3. A technician is trying to estimate the area \(\mu ^ { 2 }\) of a metal square. The independent random variables \(X _ { 1 }\) and \(X _ { 2 }\) are each distributed \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\) and represent two measurements of the sides of the square. Two estimators of the area, \(A _ { 1 }\) and \(A _ { 2 }\), are proposed where $$A _ { 1 } = X _ { 1 } X _ { 2 } \quad \text { and } \quad A _ { 2 } = \left( \frac { X _ { 1 } + X _ { 2 } } { 2 } \right) ^ { 2 } .$$ [You may assume that if \(X _ { 1 }\) and \(X _ { 2 }\) are independent random variables then $$\left. \mathrm { E } \left( X _ { 1 } X _ { 2 } \right) = \mathrm { E } \left( X _ { 1 } \right) \mathrm { E } \left( X _ { 2 } \right) \right]$$
  1. Find \(\mathrm { E } \left( A _ { 1 } \right)\) and show that \(\mathrm { E } \left( A _ { 2 } \right) = \mu ^ { 2 } + \frac { \sigma ^ { 2 } } { 2 }\).
  2. Find the bias of each of these estimators. The technician is told that \(\operatorname { Var } \left( A _ { 1 } \right) = \sigma ^ { 4 } + 2 \mu ^ { 2 } \sigma ^ { 2 }\) and \(\operatorname { Var } \left( A _ { 2 } \right) = \frac { 1 } { 2 } \sigma ^ { 4 } + 2 \mu ^ { 2 } \sigma ^ { 2 }\). The technician decided to use \(A _ { 1 }\) as the estimator for \(\mu ^ { 2 }\).
  3. Suggest a possible reason for this decision. A statistician suggests taking a random sample of \(n\) measurements of sides of the square and finding the mean \(\bar { X }\). He knows that \(\mathrm { E } \left( \bar { X } ^ { 2 } \right) = \mu ^ { 2 } + \frac { \sigma ^ { 2 } } { n }\) and \(\operatorname { Var } \left( \bar { X } ^ { 2 } \right) = \frac { 2 \sigma ^ { 4 } } { n ^ { 2 } } + \frac { 4 \sigma ^ { 2 } \mu ^ { 2 } } { n }\).
  4. Explain whether or not \(\bar { X } ^ { 2 }\) is a consistent estimator of \(\mu ^ { 2 }\).