Direct prediction from given regression line

A question is this sub-type if and only if the regression line equation is already provided in the question and the task is simply to substitute a value to make a prediction.

2 questions

OCR MEI Further Statistics Major 2023 June Q2
2 A student is investigating the link between temperature and electricity consumption in the winter months. The student finds the average minimum temperature, \(x ^ { \circ } \mathrm { C }\), from across the country on a day. The student then finds the total electricity consumption for that day, \(y \mathrm { GWh }\). The scatter diagram below shows the values of \(x\) and \(y\) obtained from a random sample of 10 winter days. It also shows the equation of the regression line of \(y\) on \(x\) and the value of \(r ^ { 2 }\), where \(r\) is the product moment correlation coefficient.
\includegraphics[max width=\textwidth, alt={}, center]{c692fb20-436f-4bc1-89bd-10fdba41ceba-03_776_1043_609_244}
  1. Use the regression line to estimate the electricity consumption at each of the following average minimum temperatures.
    • \(5 ^ { \circ } \mathrm { C }\)
    • \(- 4 ^ { \circ } \mathrm { C }\)
    • Comment on the reliability of your estimates.
Edexcel S1 2022 January Q6
  1. Students on a psychology course were given a pre-test at the start of the course and a final exam at the end of the course. The teacher recorded the number of marks achieved on the pre-test, \(p\), and the number of marks achieved on the final exam, \(f\), for 34 students and displayed them on the scatter diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{fa1cb8a2-dab9-4133-b7a1-9108888c37d7-22_1121_1136_447_438}
The equation of the least squares regression line for these data is found to be $$f = 10.8 + 0.748 p$$ For these students, the mean number of marks on the pre-test is 62.4
  1. Use the regression model to find the mean number of marks on the final exam.
  2. Give an interpretation of the gradient of the regression line. Considering the equation of the regression line, Priya says that she would expect someone who scored 0 marks on the pre-test to score 10.8 marks on the final exam.
  3. Comment on the reliability of Priya's statement.
  4. Write down the number of marks achieved on the final exam for the student who exceeded the expectation of the regression model by the largest number of marks.
  5. Find the range of values of \(p\) for which this regression model, \(f = 10.8 + 0.748 p\), predicts a greater number of marks on the final exam than on the pre-test. Later the teacher discovers an error in the recorded data. The student who achieved a score of 98 on the pre-test, scored 92 not 29 on the final exam. The summary statistics used for the model \(f = 10.8 + 0.748 p\) are corrected to include this information and a new least squares regression line is found. Given the original summary statistics were, $$n = 34 \quad \sum p = 2120 \quad \sum p f = 133486 \quad \mathrm {~S} _ { p p } = 15573.76 \quad \mathrm {~S} _ { p f } = 11648.35$$
  6. calculate the gradient of the new regression line. Show your working clearly.