State distribution and mean

A question is this type if and only if it asks to identify or state the type of distribution and its mean from a given PDF or CDF.

5 questions

CAIE FP2 2011 June Q5
5 The continuous random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} 0.01 \mathrm { e } ^ { - 0.01 x } & x \geqslant 0
0 & x < 0 \end{cases}$$
  1. State the value of \(\mathrm { E } ( X )\).
  2. Find the median value of \(X\).
  3. Find the probability that \(X\) lies between the median and the mean.
CAIE FP2 2013 June Q6
6 The random variable \(X\) has distribution function F given by $$\mathrm { F } ( x ) = \begin{cases} 1 - \mathrm { e } ^ { - 0.6 x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$ Identify the distribution of \(X\) and state its mean. Find
  1. \(\mathrm { P } ( X > 4 )\),
  2. the median of \(X\).
CAIE FP2 2013 November Q6
6 The random variable \(T\) is the time, in suitable units, between two successive arrivals in a hospital casualty department. The probability density function of \(T\) is f , where $$\mathrm { f } ( t ) = \begin{cases} 0.2 \mathrm { e } ^ { - 0.2 t } & t \geqslant 0
0 & \text { otherwise } \end{cases}$$ State the expected value of \(T\). Write down the distribution function of \(T\) and find \(\mathrm { P } ( T > 10 )\).
CAIE FP2 2014 November Q7
7 The time, \(T\) seconds, between successive cars passing a particular checkpoint on a wide road has probability density function f given by $$\mathrm { f } ( t ) = \begin{cases} \frac { 1 } { 100 } \mathrm { e } ^ { - 0.01 t } & t \geqslant 0
0 & \text { otherwise } . \end{cases}$$
  1. State the expected value of \(T\).
  2. Find the median value of \(T\). Sally wishes to cross the road at this checkpoint and she needs 20 seconds to complete the crossing. She decides to start out immediately after a car passes. Find the probability that she will complete the crossing before the next car passes.
CAIE FP2 2014 November Q7
7 The time, \(T\) seconds, between successive cars passing a particular checkpoint on a wide road has probability density function f given by $$\mathrm { f } ( t ) = \begin{cases} \frac { 1 } { 100 } \mathrm { e } ^ { - 0.01 t } & t \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. State the expected value of \(T\).
  2. Find the median value of \(T\). Sally wishes to cross the road at this checkpoint and she needs 20 seconds to complete the crossing. She decides to start out immediately after a car passes. Find the probability that she will complete the crossing before the next car passes.