Skewness from moments

Determine or describe the skewness of a distribution by comparing mean, median, and mode, or by calculating a skewness coefficient.

2 questions

Edexcel S2 2003 January Q4
4. The continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \begin{cases} 0 , & x < 0
\frac { 1 } { 3 } x ^ { 2 } \left( 4 - x ^ { 2 } \right) , & 0 \leq x \leq 1
1 & x > 1 \end{cases}$$
  1. Find \(\mathrm { P } ( X > 0.7 )\).
  2. Find the probability density function \(\mathrm { f } ( x )\) of \(X\).
  3. Calculate \(\mathrm { E } ( X )\) and show that, to 3 decimal places, \(\operatorname { Var } ( X ) = 0.057\). One measure of skewness is $$\frac { \text { Mean - Mode } } { \text { Standard deviation } } .$$
  4. Evaluate the skewness of the distribution of \(X\).
Edexcel S2 2007 January Q7
7. The continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \begin{cases} 0 , & x < 0
2 x ^ { 2 } - x ^ { 3 } , & 0 \leqslant x \leqslant 1
1 , & x > 1 \end{cases}$$
  1. Find \(\mathrm { P } ( X > 0.3 )\).
  2. Verify that the median value of \(X\) lies between \(x = 0.59\) and \(x = 0.60\).
  3. Find the probability density function \(\mathrm { f } ( x )\).
  4. Evaluate \(\mathrm { E } ( X )\).
  5. Find the mode of \(X\).
  6. Comment on the skewness of \(X\). Justify your answer.