Verify CDF properties

Verify that a given function is a valid cumulative distribution function by checking monotonicity, limits, and continuity conditions.

2 questions

OCR S3 2009 June Q6
6 The function \(\mathrm { F } ( t )\) is defined as follows. $$\mathrm { F } ( t ) = \begin{cases} 0 & t < 0
\sin ^ { 4 } t & 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi
1 & t > \frac { 1 } { 2 } \pi \end{cases}$$
  1. Verify that F is a (cumulative) distribution function. The continuous random variable \(T\) has (cumulative) distribution function \(\mathrm { F } ( t )\).
  2. Find the lower quartile of \(T\).
  3. Find the (cumulative) distribution function of \(Y\), where \(Y = \sin T\), and obtain the probability density function of \(Y\).
  4. Find the expected value of \(\frac { 1 } { Y ^ { 3 } + 2 Y ^ { 4 } }\).
Edexcel S2 2013 January Q5
5. The continuous random variable \(T\) is used to model the number of days, \(t\), a mosquito survives after hatching. The probability that the mosquito survives for more than \(t\) days is $$\frac { 225 } { ( t + 15 ) ^ { 2 } } , \quad t \geqslant 0$$
  1. Show that the cumulative distribution function of \(T\) is given by $$\mathrm { F } ( t ) = \begin{cases} 1 - \frac { 225 } { ( t + 15 ) ^ { 2 } } & t \geqslant 0
    0 & \text { otherwise } \end{cases}$$
  2. Find the probability that a randomly selected mosquito will die within 3 days of hatching.
  3. Given that a mosquito survives for 3 days, find the probability that it will survive for at least 5 more days. A large number of mosquitoes hatch on the same day.
  4. Find the number of days after which only \(10 \%\) of these mosquitoes are expected to survive.