Given a discrete cumulative distribution function in table form, find the probability mass function, individual probabilities, or missing constants.
9 questions
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { p } ( x )\) | 0.10 | \(a\) | 0.28 | \(c\) | 0.24 |
| \(\mathrm {~F} ( x )\) | 0.10 | 0.26 | \(b\) | 0.76 | \(d\) |
| \(x\) | 1 | 3 | 5 | 7 |
| \(\mathrm {~F} ( x )\) | 0.2 | 0.5 | 0.9 | 1 |
| \(X\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| \(\mathrm {~F} ( x )\) | 0.1 | 0.2 | 0.25 | 0.4 | 0.5 | 0.6 | 0.75 | 1 |
| \(x\) | 1 | 2 | 3 |
| \(\mathrm {~F} ( x )\) | 0.4 | 0.65 | 1 |
| \(x\) | - 1 | 0 | 1 | 2 |
| \(\mathrm { P } ( X = x )\) | \(a\) | \(b\) | \(b\) | \(c\) |
| \(x\) | - 1 | 0 | 1 | 2 |
| \(\mathrm {~F} ( x )\) | \(\frac { 1 } { 3 }\) | \(d\) | \(\frac { 5 } { 6 }\) | \(e\) |
| \(x\) | 2 | 4 | 7 | 10 |
| \(\mathrm { P } ( X = x )\) | \(a\) | \(b\) | 0.1 | \(c\) |
| \(a\) | 0 | 2 | 4 |
| \(\mathrm {~F} ( a )\) | 0.2 | 0.6 | 1 |