5 The random variable \(X\) is such that \(\mathrm { P } ( \mathrm { X } = \mathrm { r } ) = \mathrm { kr } ^ { 2 }\) for \(r = 1,2,3,4\), where \(k\) is a constant.
- Find the value of \(k\).
- Find the probability generating function \(\mathrm { G } _ { X } ( \mathrm { t } )\) of \(X\).
The random variable \(Y\) has probability generating function \(\mathrm { G } _ { Y } ( \mathrm { t } ) = \frac { 1 } { 4 } + \frac { 1 } { 2 } \mathrm { t } + \frac { 1 } { 4 } \mathrm { t } ^ { 2 }\).
The random variable \(Z\) is the sum of \(X\) and \(Y\). - Assuming that \(X\) and \(Y\) are independent, find the probability generating function \(\mathrm { G } _ { \mathrm { Z } } ( \mathrm { t } )\) of \(Z\) as a polynomial in \(t\).
- Given that \(\mathrm { E } ( \mathrm { Z } ) = \frac { 13 } { 3 }\), use \(\mathrm { G } _ { \mathrm { Z } } ( \mathrm { t } )\) to find \(\operatorname { Var } ( \mathrm { Z } )\).