Simulation and spreadsheet problems

Questions involving simulated data or spreadsheet representations of random variables and their distributions.

1 questions

OCR MEI Further Statistics Major 2020 November Q10
10 The discrete random variables \(X\) and \(Y\) have distributions as follows: \(X \sim \mathrm {~B} ( 20,0.3 )\) and \(Y \sim \operatorname { Po } ( 3 )\). The spreadsheet in Fig. 10 shows a simulation of the distributions of \(X\) and \(Y\). Each of the 20 rows below the heading row consists of a value of \(X\), a value of \(Y\), and the value of \(X - 2 Y\). \begin{table}[h]
1ABC
1XY\(X - 2 Y\)
266-6
354-3
4816
565-4
6630
7816
864-2
954-3
1074-1
11832
12622
13513
14614
1554-3
16723
17521
1844-4
19505
20513
21420
nn
\captionsetup{labelformat=empty} \caption{Fig. 10}
\end{table}
  1. Use the spreadsheet to estimate each of the following.
    • \(\mathrm { P } ( X - 2 Y > 0 )\)
    • \(\mathrm { P } ( X - 2 Y > 1 )\)
    • How could the estimates in part (a) be improved?
    The mean of 50 values of \(X - 2 Y\) is denoted by the random variable \(W\).
  2. Calculate an estimate of \(\mathrm { P } ( W > 1 )\).