5 It is given that \(\mathrm { f } ( x ) = x ^ { 3 } - k\), where \(k > 0\), and that \(\alpha\) is the real root of the equation \(\mathrm { f } ( x ) = 0\). Successive approximations to \(\alpha\), using the Newton-Raphson method, are denoted by \(x _ { 1 } , x _ { 2 } , \ldots , x _ { n } , \ldots\).
- Show that \(x _ { n + 1 } = \frac { 2 x _ { n } ^ { 3 } + k } { 3 x _ { n } ^ { 2 } }\).
- Sketch the graph of \(y = \mathrm { f } ( x )\), giving the coordinates of the intercepts with the axes. Show on your sketch how it is possible for \(\left| \alpha - x _ { 2 } \right|\) to be greater than \(\left| \alpha - x _ { 1 } \right|\).
It is now given that \(k = 100\) and \(x _ { 1 } = 5\).
- Write down the exact value of \(\alpha\) and find \(x _ { 2 }\) and \(x _ { 3 }\) correct to 5 decimal places.
- The error \(e _ { n }\) is defined by \(e _ { n } = \alpha - x _ { n }\). By finding \(e _ { 1 } , e _ { 2 }\) and \(e _ { 3 }\), verify that \(e _ { 3 } \approx \frac { e _ { 2 } ^ { 3 } } { e _ { 1 } ^ { 2 } }\).