CAIE FP2 (Further Pure Mathematics 2) 2014 November

Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-2_312_409_525_868} A small smooth ball \(P\) is moving on a smooth horizontal plane with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It strikes a smooth vertical barrier at an angle \(\alpha\) (see diagram). The coefficient of restitution between \(P\) and the barrier is 0.4 . Given that the speed of \(P\) is halved as a result of the collision, find the value of \(\alpha\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-2_413_414_1155_863} A smooth cylinder of radius \(a\) is fixed with its axis horizontal. The point \(O\) is the centre of a circular cross-section of the cylinder. The line \(A O B\) is a diameter of this circular cross-section and the radius \(O A\) makes an angle \(\alpha\) with the upward vertical (see diagram). It is given that \(\cos \alpha = \frac { 3 } { 5 }\). A particle \(P\) of mass \(m\) moves on the inner surface of the cylinder in the plane of the cross-section. The particle passes through \(A\) with speed \(u\) along the surface in the downwards direction. The magnitude of the reaction between \(P\) and the inner surface of the sphere is \(R _ { A }\) when \(P\) is at \(A\), and is \(R _ { B }\) when \(P\) is at \(B\). It is given that \(R _ { B } = 10 R _ { A }\). Show that \(u ^ { 2 } = a g\). The particle loses contact with the surface of the cylinder when \(O P\) makes an angle \(\theta\) with the upward vertical. Find the value of \(\cos \theta\).
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-3_513_643_260_749} A uniform rod \(A B\), of length \(l\) and mass \(m\), rests in equilibrium with its lower end \(A\) on a rough horizontal floor and the end \(B\) against a smooth vertical wall. The rod is inclined to the horizontal at an angle \(\alpha\), where \(\tan \alpha = \frac { 3 } { 4 }\), and is in a vertical plane perpendicular to the wall. The rod is supported by a light spring \(C D\) which is in compression in a vertical line with its lower end \(D\) fixed on the floor. The upper end \(C\) is attached to the rod at a distance \(\frac { 1 } { 4 } l\) from \(B\) (see diagram). The coefficient of friction at \(A\) between the rod and the floor is \(\frac { 1 } { 3 }\) and the system is in limiting equilibrium.
  1. Show that the normal reaction of the floor at \(A\) has magnitude \(\frac { 1 } { 2 } m g\) and find the force in the spring.
  2. Given that the modulus of elasticity of the spring is \(2 m g\), find the natural length of the spring.
Question 7
View details
7 The time, \(T\) seconds, between successive cars passing a particular checkpoint on a wide road has probability density function f given by $$\mathrm { f } ( t ) = \begin{cases} \frac { 1 } { 100 } \mathrm { e } ^ { - 0.01 t } & t \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. State the expected value of \(T\).
  2. Find the median value of \(T\). Sally wishes to cross the road at this checkpoint and she needs 20 seconds to complete the crossing. She decides to start out immediately after a car passes. Find the probability that she will complete the crossing before the next car passes.
Question 11 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).