\includegraphics[max width=\textwidth, alt={}]{0d4a352c-4eda-45b4-9284-60c6fc680f02-5_606_789_411_680}
A uniform rod \(A B\), of weight \(W\) and length \(2 a\), rests with the end \(A\) on a rough horizontal plane. A light inextensible string \(B C\) is attached to the rod at \(B\) and passes over a small smooth fixed peg \(P\), which is at a distance \(h\) vertically above \(A\). A particle is attached at \(C\) and hangs vertically. The points \(A , B\) and \(C\) are all in the same vertical plane. In equilibrium the rod is inclined at an angle \(\theta\) to the horizontal (see diagram). The coefficient of friction between the rod and the plane is \(\mu\). Show that
$$\mu \geqslant \frac { 2 a \cos \theta } { h + 2 a \sin \theta }$$
Given that the particle attached at \(C\) has weight \(k W\), angle \(A B P = 90 ^ { \circ }\) and \(h = 3 a\), find
- the value of \(k\),
- the horizontal component of the force on \(P\), in terms of \(W\).