9 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
A light elastic string has one end attached to a fixed point, \(A\), on a rough plane inclined at \(30 ^ { \circ }\) to the horizontal.
The other end of the string is attached to a particle, \(P\), of mass 2 kg .
The elastic string has natural length 1.3 metres and modulus of elasticity 65 N .
The particle is pulled down the plane in the direction of the line of greatest slope through \(A\).
The particle is released from rest when it is 2 metres from \(A\), as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4fdb2637-6368-422c-99da-85b80efe31c5-14_549_744_861_785}
The coefficient of friction between the particle and the plane is 0.6
After the particle is released it moves up the plane.
The particle comes to rest at a point \(B\), which is a distance, \(d\) metres, from \(A\).
9
- Show that the value of \(d\) is 1.4.
[0pt]
[7 marks]
9 - Determine what happens after \(P\) reaches the point \(B\).
Fully justify your answer.
[0pt]
[3 marks]