AQA Further Paper 3 Statistics (Further Paper 3 Statistics) 2024 June

Question 1
View details
1 The random variable \(X\) has a Poisson distribution with mean 16 Find the standard deviation of \(X\) Circle your answer.
4
8
16
256
Question 4
View details
4
8
16
256 2 The random variable \(T\) has an exponential distribution with mean 2 Find \(\mathrm { P } ( T \leq 1.4 )\)
Circle your answer.
\(\mathrm { e } ^ { - 2.8 }\)
\(\mathrm { e } ^ { - 0.7 }\)
\(1 - e ^ { - 0.7 }\)
\(1 - \mathrm { e } ^ { - 2.8 }\) The continuous random variable \(Y\) has cumulative distribution function $$\mathrm { F } ( y ) = \left\{ \begin{array} { l r } 0 & y < 2
- \frac { 1 } { 9 } y ^ { 2 } + \frac { 10 } { 9 } y - \frac { 16 } { 9 } & 2 \leq y < 5
1 & y \geq 5 \end{array} \right.$$ Find the median of \(Y\) Circle your answer. 2
\(\frac { 10 - 3 \sqrt { 2 } } { 2 }\)
\(\frac { 7 } { 2 }\)
\(\frac { 10 + 3 \sqrt { 2 } } { 2 }\) Turn over for the next question 4 Research has shown that the mean number of volcanic eruptions on Earth each day is 20 Sandra records 162 volcanic eruptions during a period of one week. Sandra claims that there has been an increase in the mean number of volcanic eruptions per week. Test Sandra's claim at the \(5 \%\) level of significance.
Question 5
View details
5 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 6 } e ^ { \frac { x } { 3 } } & 0 \leq x \leq \ln 27
0 & \text { otherwise } \end{cases}$$ Show that the mean of \(X\) is \(\frac { 3 } { 2 } ( \ln 27 - 2 )\)
Question 6
View details
6 Over time it has been accepted that the mean retirement age for professional baseball players is 29.5 years old. Imran claims that the mean retirement age is no longer 29.5 years old.
He takes a random sample of 5 recently retired professional baseball players and records their retirement ages, \(x\). The results are $$\sum x = 152.1 \quad \text { and } \quad \sum ( x - \bar { x } ) ^ { 2 } = 7.81$$ 6
  1. State an assumption that you should make about the distribution of the retirement ages to investigate Imran's claim. 6
  2. Investigate Imran's claim, using the 10\% level of significance.
Question 8
View details
8
16
256 2 The random variable \(T\) has an exponential distribution with mean 2 Find \(\mathrm { P } ( T \leq 1.4 )\)
Circle your answer.
\(\mathrm { e } ^ { - 2.8 }\)
\(\mathrm { e } ^ { - 0.7 }\)
\(1 - e ^ { - 0.7 }\)
\(1 - \mathrm { e } ^ { - 2.8 }\) The continuous random variable \(Y\) has cumulative distribution function $$\mathrm { F } ( y ) = \left\{ \begin{array} { l r } 0 & y < 2
- \frac { 1 } { 9 } y ^ { 2 } + \frac { 10 } { 9 } y - \frac { 16 } { 9 } & 2 \leq y < 5
1 & y \geq 5 \end{array} \right.$$ Find the median of \(Y\) Circle your answer. 2
\(\frac { 10 - 3 \sqrt { 2 } } { 2 }\)
\(\frac { 7 } { 2 }\)
\(\frac { 10 + 3 \sqrt { 2 } } { 2 }\) Turn over for the next question 4 Research has shown that the mean number of volcanic eruptions on Earth each day is 20 Sandra records 162 volcanic eruptions during a period of one week. Sandra claims that there has been an increase in the mean number of volcanic eruptions per week. Test Sandra's claim at the \(5 \%\) level of significance.
5 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 6 } e ^ { \frac { x } { 3 } } & 0 \leq x \leq \ln 27
0 & \text { otherwise } \end{cases}$$ Show that the mean of \(X\) is \(\frac { 3 } { 2 } ( \ln 27 - 2 )\)
6 Over time it has been accepted that the mean retirement age for professional baseball players is 29.5 years old. Imran claims that the mean retirement age is no longer 29.5 years old.
He takes a random sample of 5 recently retired professional baseball players and records their retirement ages, \(x\). The results are $$\sum x = 152.1 \quad \text { and } \quad \sum ( x - \bar { x } ) ^ { 2 } = 7.81$$ 6
  1. State an assumption that you should make about the distribution of the retirement ages to investigate Imran's claim. 6
  2. Investigate Imran's claim, using the 10\% level of significance.
Question 9
View details
9 A company owns three shops, A, B and C, which are based in different towns. Each shop gives a questionnaire to 250 of their customers, and every customer completes the questionnaire. One of the questions asks whether the customer rates the shop as good, satisfactory or poor. For shop A, 26\% of customers rate the shop as good and 38\% of customers rate the shop as poor. For shop B, 32\% of customers rate the shop as good and 40\% of customers rate the shop as satisfactory. Altogether, there are 210 good ratings and 261 satisfactory ratings. 9
  1. Complete the following table with the observed frequencies.
    \multirow{2}{*}{}Rating
    GoodSatisfactoryPoor
    \multirow{3}{*}{Shop}A
    B
    C
    9
  2. Carry out a test for association between shop and rating, using the 1\% level of significance.
Question 16
View details
16
256 2 The random variable \(T\) has an exponential distribution with mean 2 Find \(\mathrm { P } ( T \leq 1.4 )\)
Circle your answer.
\(\mathrm { e } ^ { - 2.8 }\)
\(\mathrm { e } ^ { - 0.7 }\)
\(1 - e ^ { - 0.7 }\)
\(1 - \mathrm { e } ^ { - 2.8 }\) The continuous random variable \(Y\) has cumulative distribution function $$\mathrm { F } ( y ) = \left\{ \begin{array} { l r } 0 & y < 2
- \frac { 1 } { 9 } y ^ { 2 } + \frac { 10 } { 9 } y - \frac { 16 } { 9 } & 2 \leq y < 5
1 & y \geq 5 \end{array} \right.$$ Find the median of \(Y\) Circle your answer. 2
\(\frac { 10 - 3 \sqrt { 2 } } { 2 }\)
\(\frac { 7 } { 2 }\)
\(\frac { 10 + 3 \sqrt { 2 } } { 2 }\) Turn over for the next question 4 Research has shown that the mean number of volcanic eruptions on Earth each day is 20 Sandra records 162 volcanic eruptions during a period of one week. Sandra claims that there has been an increase in the mean number of volcanic eruptions per week. Test Sandra's claim at the \(5 \%\) level of significance.
5 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 6 } e ^ { \frac { x } { 3 } } & 0 \leq x \leq \ln 27
0 & \text { otherwise } \end{cases}$$ Show that the mean of \(X\) is \(\frac { 3 } { 2 } ( \ln 27 - 2 )\)
6 Over time it has been accepted that the mean retirement age for professional baseball players is 29.5 years old. Imran claims that the mean retirement age is no longer 29.5 years old.
He takes a random sample of 5 recently retired professional baseball players and records their retirement ages, \(x\). The results are $$\sum x = 152.1 \quad \text { and } \quad \sum ( x - \bar { x } ) ^ { 2 } = 7.81$$ 6
  1. State an assumption that you should make about the distribution of the retirement ages to investigate Imran's claim. 6
  2. Investigate Imran's claim, using the 10\% level of significance.