CAIE FP2 (Further Pure Mathematics 2) 2014 June

Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{ae8d874a-5c1d-45bb-b853-d12006004b7f-2_519_583_1384_781} A smooth wire is in the form of an \(\operatorname { arc } A B\) of a circle, of radius \(a\), that subtends an obtuse angle \(\pi - \theta\) at the centre \(O\) of the circle. It is given that \(\sin \theta = \frac { 1 } { 4 }\). The wire is fixed in a vertical plane, with \(A O\) horizontal and \(B\) below the level of \(O\) (see diagram). A small bead of mass \(m\) is threaded on the wire and projected vertically downwards from \(A\) with speed \(\sqrt { } \left( \frac { 3 } { 10 } g a \right)\).
  1. Find the reaction between the bead and the wire when the bead is vertically below \(O\).
  2. Find the speed of the bead as it leaves the wire at \(B\).
  3. Show that the greatest height reached by the bead is \(\frac { 1 } { 8 } a\) above the level of \(O\).
Question 11 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{ae8d874a-5c1d-45bb-b853-d12006004b7f-5_871_621_370_762}
The points \(C\) and \(D\) are at a distance \(( 2 \sqrt { } 3 ) a\) apart on a horizontal surface. A rough peg \(A\) is fixed at a vertical distance \(6 a\) above \(C\) and a smooth peg \(B\) is fixed at a vertical distance \(4 a\) above \(D\). A uniform rectangular frame \(P Q R S\), with \(P Q = 3 a\) and \(Q R = 6 a\), is made of rigid thin wire and has weight \(W\). It rests in equilibrium in a vertical plane with \(P S\) on \(A\) and \(S R\) on \(B\), and with angle \(S A C = 30 ^ { \circ }\) (see diagram).
  1. Show that \(A B = 4 a\) and that angle \(S A B = 30 ^ { \circ }\).
  2. Show that the normal reaction at \(A\) is \(\frac { 1 } { 2 } W\).
  3. Find the frictional force at \(A\).