OCR PURE

Question 1
View details
1 Write the solution of the inequality \(( x - 2 ) ( x + 3 ) > 0\) using set notation.
Question 2
View details
2 In this question you must show detailed reasoning. Solve the equation \(3 x + 1 = 4 \sqrt { x }\).
Question 3
View details
3 Give a counter example to disprove the following statement.
If \(x\) and \(y\) are both irrational then \(x + y\) is irrational.
Question 4
View details
4 The circle \(x ^ { 2 } + y ^ { 2 } - 6 x + 4 y + k = 0\) has radius 5.
Determine the value of \(k\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-04_700_727_260_242} The diagram shows a curve \(C\) for which \(y\) is inversely proportional to \(x\). The curve passes through the point \(\left( 1 , - \frac { 1 } { 2 } \right)\).
    1. Determine the equation of the gradient function for the curve \(C\).
    2. Sketch this gradient function on the axes in the Printed Answer Booklet.
  1. The diagram indicates that the curve \(C\) has no stationary points. State what feature of your sketch in part (a)(ii) corresponds to this.
  2. The curve \(C\) is translated by the vector \(\binom { - 2 } { 0 }\). Find the equation of the curve after it has been translated.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-05_538_531_264_246} The shape \(A B C\) shown in the diagram is a student's design for the sail of a small boat.
The curve \(A C\) has equation \(y = 2 \log _ { 2 } x\) and the curve \(B C\) has equation \(y = \log _ { 2 } \left( x - \frac { 3 } { 2 } \right) + 3\).
  1. State the \(x\)-coordinate of point \(A\).
  2. Determine the \(x\)-coordinate of point \(B\).
  3. By solving an equation involving logarithms, show that the \(x\)-coordinate of point \(C\) is 2 . It is given that, correct to 3 significant figures, the area of the sail is 0.656 units \(^ { 2 }\).
  4. Calculate by how much the area is over-estimated or under-estimated when the curved edges of the sail are modelled as straight lines.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-06_648_586_255_244} The diagram shows the parallelogram \(O A C B\) where \(\overrightarrow { O A } = 2 \mathbf { i } + 4 \mathbf { j }\) and \(\overrightarrow { O B } = 4 \mathbf { i } - 3 \mathbf { j }\).
  1. Show that \(\cos A O B = - \frac { 2 \sqrt { 5 } } { 25 }\).
  2. Hence find the exact value of \(\sin A O B\).
  3. Determine the area of \(O A C B\).
Question 8
View details
8
  1. The quadratic polynomial \(a x ^ { 2 } + b x\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { f } ( x )\).
    Use differentiation from first principles to determine, in terms of \(a , b\) and \(x\), an expression for \(\mathrm { f } ^ { \prime } ( x )\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-07_565_1043_516_317} $$y = a x ^ { 2 } + b x$$ The diagram shows the quadratic curve \(y = a x ^ { 2 } + b x\), where \(a\) and \(b\) are constants. The shaded region is enclosed by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 4\). The tangent to the curve at \(x = 4\) intersects the \(x\)-axis at the point with coordinates \(( k , 0 )\).
    Given that the area of the shaded region is 9 units \({ } ^ { 2 }\), and the gradient of this tangent is \(- \frac { 3 } { 4 }\), determine the value of \(k\).
Question 9
View details
9 Two forces \(( 3 \mathbf { i } + 2 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F N }\) act on a particle \(P\) of mass 4 kg .
Given that the acceleration of \(P\) is \(( - 2 \mathbf { i } + 3 \mathbf { j } ) \mathrm { ms } ^ { - 2 }\), calculate \(\mathbf { F }\).
Question 10
View details
10 A small ball \(B\) is projected vertically upwards from a point 2 m above horizontal ground. \(B\) is projected with initial speed \(3.5 \mathrm {~ms} ^ { - 1 }\), and takes \(t\) seconds to reach the ground. Find the value of \(t\).
Question 11
View details
11
\includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-08_586_672_1231_242} A particle \(P\) moves along the \(x\)-axis. At time \(t\) seconds, where \(t \geqslant 0\), the velocity of \(P\) in the positive \(x\)-direction is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It is given that \(v = t ( t - 3 ) ( 8 - t )\).
\(P\) attains its maximum velocity at time \(T\) seconds. The diagram shows part of the velocity-time graph for the motion of \(P\).
  1. State the acceleration of \(P\) at time \(T\).
  2. In this question you must show detailed reasoning. Determine the value of \(T\).
  3. Find the total distance that \(P\) travels between times \(t = 0\) and \(t = T\).
    \includegraphics[max width=\textwidth, alt={}, center]{a1f4ccbd-f5ed-437a-ae76-c4925ce86e25-09_524_410_251_242} Particles \(P\) and \(Q\), of masses 4 kg and 6 kg respectively, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley. The system is in equilibrium with \(P\) hanging 1.75 m above a horizontal plane and \(Q\) resting on the plane. Both parts of the string below the pulley are vertical (see diagram).
  4. Find the magnitude of the normal reaction force acting on \(Q\). The mass of \(P\) is doubled, and the system is released from rest. You may assume that in the subsequent motion \(Q\) does not reach the pulley.
  5. Determine the magnitude of the force exerted on the pulley by the string before \(P\) strikes the plane.
  6. Determine the total distance travelled by \(Q\) between the instant when the system is released and the instant when \(Q\) first comes momentarily to rest. When this motion is observed in practice, it is found that the total distance travelled by \(Q\) between the instant when the system is released and the instant when \(Q\) first comes momentarily to rest is less than the answer calculated in part (c).
  7. State one factor that could account for this difference.