CAIE P1 (Pure Mathematics 1) 2013 June

Question 1
View details
1 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { } ( 2 x + 5 )\) and \(( 2,5 )\) is a point on the curve. Find the equation of the curve.
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{13cfb59a-7781-4786-a625-919b01a2a4f0-2_501_641_461_753} The diagram shows a circle \(C\) with centre \(O\) and radius 3 cm . The radii \(O P\) and \(O Q\) are extended to \(S\) and \(R\) respectively so that \(O R S\) is a sector of a circle with centre \(O\). Given that \(P S = 6 \mathrm {~cm}\) and that the area of the shaded region is equal to the area of circle \(C\),
  1. show that angle \(P O Q = \frac { 1 } { 4 } \pi\) radians,
  2. find the perimeter of the shaded region.
Question 3
View details
3
  1. Express the equation \(2 \cos ^ { 2 } \theta = \tan ^ { 2 } \theta\) as a quadratic equation in \(\cos ^ { 2 } \theta\).
  2. Solve the equation \(2 \cos ^ { 2 } \theta = \tan ^ { 2 } \theta\) for \(0 \leqslant \theta \leqslant \pi\), giving solutions in terms of \(\pi\).
Question 4
View details
4
  1. Find the first three terms in the expansion of \(( 2 + a x ) ^ { 5 }\) in ascending powers of \(x\).
  2. Given that the coefficient of \(x ^ { 2 }\) in the expansion of \(( 1 + 2 x ) ( 2 + a x ) ^ { 5 }\) is 240 , find the possible values of \(a\).
Question 5
View details
5
  1. Sketch, on the same diagram, the curves \(y = \sin 2 x\) and \(y = \cos x - 1\) for \(0 \leqslant x \leqslant 2 \pi\).
  2. Hence state the number of solutions, in the interval \(0 \leqslant x \leqslant 2 \pi\), of the equations
    (a) \(2 \sin 2 x + 1 = 0\),
    (b) \(\sin 2 x - \cos x + 1 = 0\).
Question 6
View details
6 The non-zero variables \(x , y\) and \(u\) are such that \(u = x ^ { 2 } y\). Given that \(y + 3 x = 9\), find the stationary value of \(u\) and determine whether this is a maximum or a minimum value.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{13cfb59a-7781-4786-a625-919b01a2a4f0-3_465_554_255_794} The diagram shows three points \(A ( 2,14 ) , B ( 14,6 )\) and \(C ( 7,2 )\). The point \(X\) lies on \(A B\), and \(C X\) is perpendicular to \(A B\). Find, by calculation,
  1. the coordinates of \(X\),
  2. the ratio \(A X : X B\).
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{13cfb59a-7781-4786-a625-919b01a2a4f0-3_716_437_1137_854} The diagram shows a parallelogram \(O A B C\) in which $$\overrightarrow { O A } = \left( \begin{array} { r } 3
3
- 4 \end{array} \right) \quad \text { and } \quad \overrightarrow { O B } = \left( \begin{array} { l } 5
0
2 \end{array} \right)$$
  1. Use a scalar product to find angle \(B O C\).
  2. Find a vector which has magnitude 35 and is parallel to the vector \(\overrightarrow { O C }\).
Question 9
View details
9
  1. In an arithmetic progression, the sum, \(S _ { n }\), of the first \(n\) terms is given by \(S _ { n } = 2 n ^ { 2 } + 8 n\). Find the first term and the common difference of the progression.
  2. The first 2 terms of a geometric progression are 64 and 48 respectively. The first 3 terms of the geometric progression are also the 1st term, the 9th term and the \(n\)th term respectively of an arithmetic progression. Find the value of \(n\).
Question 10
View details
10 The function f is defined by \(\mathrm { f } : x \mapsto 2 x + k , x \in \mathbb { R }\), where \(k\) is a constant.
  1. In the case where \(k = 3\), solve the equation \(\mathrm { ff } ( x ) = 25\). The function g is defined by \(\mathrm { g } : x \mapsto x ^ { 2 } - 6 x + 8 , x \in \mathbb { R }\).
  2. Find the set of values of \(k\) for which the equation \(\mathrm { f } ( x ) = \mathrm { g } ( x )\) has no real solutions. The function \(h\) is defined by \(h : x \mapsto x ^ { 2 } - 6 x + 8 , x > 3\).
  3. Find an expression for \(\mathrm { h } ^ { - 1 } ( x )\).
Question 11
View details
11
\includegraphics[max width=\textwidth, alt={}, center]{13cfb59a-7781-4786-a625-919b01a2a4f0-4_643_570_849_790} The diagram shows part of the curve \(y = \frac { 8 } { \sqrt { } x } - x\) and points \(A ( 1,7 )\) and \(B ( 4,0 )\) which lie on the curve. The tangent to the curve at \(B\) intersects the line \(x = 1\) at the point \(C\).
  1. Find the coordinates of \(C\).
  2. Find the area of the shaded region.