5 Find the particular solution of the differential equation
$$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x ^ { 2 }$$
given that, when \(x = 0 , y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-11_2726_35_97_20}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_869_636_260_715}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_2720_38_109_2009}
(b) Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \mathrm { e } ^ { 1 - x } \mathrm {~d} x\).
(c) Show that \(\lim _ { n \rightarrow \infty } \left( U _ { n } - L _ { n } \right) = 0\).
(d) Use the Maclaurin's series for \(\mathrm { e } ^ { x }\) given in the list of formulae (MF19) to find the first three terms of the series expansion of \(z \left( 1 - \mathrm { e } ^ { - \frac { 1 } { z } } \right)\), in ascending powers of \(\frac { 1 } { z }\), and deduce the value of \(\lim _ { n \rightarrow \infty } \left( U _ { n } \right)\).