CAIE Further Paper 2 (Further Paper 2) 2023 November

Question 4
View details
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { d y } { d x } = - 8\).
Question 6
View details
6
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\sinh 2 x = 2 \sinh x \cosh x$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1550_374_347}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_475_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_566_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_59_1566_657_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1570_749_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_54_1570_840_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_63_1570_922_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1570_1009_324}
  2. Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm {~d} x\).
  3. Find the particular solution of the differential equation $$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$ given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
Question 8
View details
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.