CAIE Further Paper 2 (Further Paper 2) 2020 June

Question 3
View details
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{1de67949-6262-4ade-b986-02b6563ae404-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
Question 6
View details
6 The integral \(\mathrm { I } _ { \mathrm { n } }\), where \(n\) is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\).
  2. By considering \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \mathrm { x } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \right)\), or otherwise, show that $$\mathrm { nl } _ { \mathrm { n } + 2 } = 2 ^ { \mathrm { n } - 1 } 3 ^ { - \frac { 1 } { 2 } \mathrm { n } } + ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } } .$$
  3. Find the exact value of \(I _ { 5 }\) giving the answer in the form \(k \sqrt { 3 }\), where \(k\) is a rational number to be determined.
    \includegraphics[max width=\textwidth, alt={}, center]{1de67949-6262-4ade-b986-02b6563ae404-11_78_1576_336_321}