3.(a)Prove that \(\tan 15 ^ { \circ } = 2 - \sqrt { 3 }\)
(b)Solve,for \(0 \leqslant \theta < 360 ^ { \circ }\) ,
$$\sin \left( \theta + 60 ^ { \circ } \right) \sin \left( \theta - 60 ^ { \circ } \right) = ( 1 - \sqrt { } 3 ) \cos ^ { 2 } \theta$$
\includegraphics[max width=\textwidth, alt={}]{280c36e3-6bb5-44b7-8222-17ce25c1bdbe-3_1008_1343_369_465}
Figure 1 shows a sketch of the curve \(C\) with equation
$$y = \cos x \ln ( \sec x ) , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 } .$$
The points \(A\) and \(B\) are maximum points on \(C\) .
(a)Find the coordinates of \(B\) in terms of e .
The finite region \(R\) lies between \(C\) and the line \(A B\) .
(b)Show that the area of \(R\) is
$$\frac { 2 } { \mathrm { e } } \arccos \left( \frac { 1 } { \mathrm { e } } \right) + 2 \ln \left( \mathrm { e } + \sqrt { } \left( \mathrm { e } ^ { 2 } - 1 \right) \right) - \frac { 4 } { \mathrm { e } } \sqrt { } \left( \mathrm { e } ^ { 2 } - 1 \right) .$$
\(\left[ \arccos x \right.\) is an alternative notation for \(\left. \cos ^ { - 1 } x \right]\)