AQA D2 (Decision Mathematics 2)

Question 4
View details
4 [Figures 3, 4 and 5, printed on the insert, are provided for use in this question.]
The network shows a system of pipes, with the lower and upper capacities for each pipe in litres per second.
\includegraphics[max width=\textwidth, alt={}, center]{c18db720-6fe8-4e6c-bd0c-dc51cc341b47-005_547_1214_555_404}
  1. Figure 3, on the insert, shows a partially completed diagram for a feasible flow of 10 litres per second from \(S\) to \(T\). Indicate, on Figure 3, the flows along the edges \(M N , P Q , N P\) and \(N T\).
    1. Taking your answer from part (a) as an initial flow, use flow augmentation on Figure 4 to find the maximum flow from \(S\) to \(T\).
    2. State the value of the maximum flow and illustrate this flow on Figure 5.
  2. Find a cut with capacity equal to that of the maximum flow.
Question 7
View details
7 The network below shows a system of one-way roads. The number on each edge represents the number of bags for recycling that can be collected by driving along that road. A collector is to drive from \(A\) to \(I\).
\includegraphics[max width=\textwidth, alt={}, center]{c18db720-6fe8-4e6c-bd0c-dc51cc341b47-144_867_1644_552_191}
  1. Working backwards from \(\boldsymbol { I }\), use dynamic programming to find the maximum number of bags that can be collected when driving from \(A\) to \(I\). You must complete the table opposite as your solution.
  2. State the route that the collector should take in order to collect the maximum number of bags.
  3. StageStateFromValue
    1GI
    HI
    2
Question 8
View details
8 The network below represents a system of pipes. The capacity of each pipe, in litres per second, is indicated on the corresponding edge.
\includegraphics[max width=\textwidth, alt={}, center]{c18db720-6fe8-4e6c-bd0c-dc51cc341b47-146_743_977_404_536}
  1. Find the maximum flow along each of the routes \(A B E H , A C F H\) and \(A D G H\) and enter their values in the table on Figure 4 opposite.
    1. Taking your answers to part (a) as the initial flow, use the labelling procedure on Figure 4 to find the maximum flow through the network. You should indicate any flow-augmenting routes in the table and modify the potential increases and decreases of the flow on the network.
    2. State the value of the maximum flow and, on Figure 5 opposite, illustrate a possible flow along each edge corresponding to this maximum flow.
  2. Confirm that you have a maximum flow by finding a cut of the same value. List the edges of your cut. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Figure 4}
    RouteFlow
    \(A B E H\)
    \(A C F H\)
    \(A D G H\)
    \end{table} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 4} \includegraphics[alt={},max width=\textwidth]{c18db720-6fe8-4e6c-bd0c-dc51cc341b47-147_746_972_397_845}
    \end{figure} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 5} \includegraphics[alt={},max width=\textwidth]{c18db720-6fe8-4e6c-bd0c-dc51cc341b47-147_739_971_1311_539}
    \end{figure}