4 Consider the linear programming problem:
$$\begin{array} { l l }
\text { maximise } & P = 3 x - 5 y ,
\text { subject to } & x + 5 y \leqslant 12 ,
& x - 5 y \leqslant 10 ,
& 3 x + 10 y \leqslant 45 ,
\text { and } & x \geqslant 0 , y \geqslant 0 .
\end{array}$$
- Represent the problem as an initial Simplex tableau.
- Identify the entry on which to pivot for the first iteration of the Simplex algorithm. Explain how you made your choice of column and row.
- Perform oneiteration of the Simplex algorithm. Write down the values of \(\mathrm { x } , \mathrm { y }\) and P after this iteration.
- Show that \(\mathrm { x } = 11 , \mathrm { y } = 0.2\) is a feasible solution and that it gives a bigger value of P than that in part (iii).