The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations, for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), as follows:
$$\begin{aligned}
& C _ { 1 } : r = 2 \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right) ,
& C _ { 2 } : r = \mathrm { e } ^ { 2 \theta } - \mathrm { e } ^ { - 2 \theta }
\end{aligned}$$
The curves intersect at the point \(P\) where \(\theta = \alpha\).
- Show that \(\mathrm { e } ^ { 2 \alpha } - 2 \mathrm { e } ^ { \alpha } - 1 = 0\). Hence find the exact value of \(\alpha\) and show that the value of \(r\) at \(P\) is \(4 \sqrt { } 2\).
- Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
- Find the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the initial line, giving your answer correct to 3 significant figures.
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.