AQA FP3 (Further Pure Mathematics 3) 2016 June

Question 1 3 marks
View details
1
  1. Find the values of the constants \(a\) and \(b\) for which \(a x + b\) is a particular integral of the differential equation $$2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 5 y = 10 x$$
  2. Hence find the general solution of \(2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 5 y = 10 x\).
    [0pt] [3 marks]
Question 2
View details
2
  1. Write down the expansion of \(\sin 2 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 5 }\).
  2. It is given that the first non-zero term in the expansion of $$\sin 2 x - 2 x \left( 1 - p x ^ { 2 } \right) \left( 1 - x ^ { 2 } \right) ^ { - 1 }$$ in ascending powers of \(x\) is \(q x ^ { 5 }\).
    Find the values of the rational numbers \(p\) and \(q\).
Question 3 1 marks
View details
3
  1. It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = ( 2 x + 1 ) \ln ( x + y )$$ and $$y ( 0 ) = 2$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 0.1 )\), giving your answer to three decimal places.
  2. It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 2 x + 1 ) \ln ( x + y )$$ and \(y = 2\) when \(x = 0\).
    1. Use implicit differentiation to find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), giving your answer in terms of \(x\) and \(y\).
    2. Hence find the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(y ( x )\). Give your answer in an exact form.
    3. Use your answer to part (b)(ii) to obtain an approximation to \(y ( 0.1 )\), giving your answer to three decimal places.
      [0pt] [1 mark]
Question 4 1 marks
View details
4
  1. The curve with Cartesian equation \(\frac { x ^ { 2 } } { c } + \frac { y ^ { 2 } } { d } = 1\) is mapped onto the curve with polar equation \(r = \frac { 10 } { 3 - 2 \cos \theta }\) by a single geometrical transformation. By writing the polar equation as a Cartesian equation in a suitable form, find the values of the constants \(c\) and \(d\).
  2. Hence describe the geometrical transformation referred to in part (a).
    [0pt] [1 mark]
Question 5 11 marks
View details
5
  1. Express \(\frac { 1 } { ( 1 + x ) ( 2 + x ) }\) in the form \(\frac { A } { 1 + x } + \frac { B } { 2 + x }\), where \(A\) and \(B\) are integers.
  2. Use the substitution \(u = \frac { \mathrm { d } y } { \mathrm {~d} x }\) to solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { 1 } { ( 1 + x ) ( 2 + x ) } \frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 + x } { 1 + x }$$ given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
    [0pt] [11 marks]
Question 6 4 marks
View details
6
  1. Use the substitution \(a = \frac { 1 } { p }\) to find \(\lim _ { p \rightarrow \infty } \left[ \frac { \ln p } { p ^ { k } } \right]\), where \(k > 0\).
  2. Evaluate the improper integral \(\int _ { 1 } ^ { \infty } \frac { \ln x } { x ^ { 7 } } \mathrm {~d} x\), showing the limiting process used.
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{0b9b947d-824b-4d3a-b66d-4bfd8d49be17-16_2039_1719_671_148}
Question 7 10 marks
View details
7 Find the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = 10 \mathrm { e } ^ { 4 x } + 8 \sin 2 x + 4 \cos 2 x$$ given that \(y = 2.5\) when \(x = 0\) and \(y = \frac { \pi } { 4 }\) when \(x = \frac { \pi } { 4 }\).
[0pt] [10 marks]
Question 8 7 marks
View details
8 The diagram shows the sketch of part of a curve, the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{0b9b947d-824b-4d3a-b66d-4bfd8d49be17-20_609_670_358_703} The polar equation of the curve is \(r = 1 + \tan \theta\).
The point \(A\) is the point on the curve at which \(\theta = \frac { \pi } { 3 }\).
The perpendicular, \(A N\), from \(A\) to the initial line intersects the curve at the point \(B\).
  1. Find the exact length of \(O A\).
    1. Given that, at the point \(B , \theta = \alpha\), show that \(( \cos \alpha + \sin \alpha ) ^ { 2 } = 1 + \frac { \sqrt { 3 } } { 2 }\).
    2. Hence, or otherwise, find \(\alpha\) in terms of \(\pi\).
  2. Show that the area of triangle \(O A B\) is \(\frac { 3 + 2 \sqrt { 3 } } { 6 }\).
  3. Find, in an exact simplified form, the area of the shaded region bounded by the curve and the line segment \(A B\).
    [0pt] [7 marks]
    \includegraphics[max width=\textwidth, alt={}]{0b9b947d-824b-4d3a-b66d-4bfd8d49be17-23_2488_1709_219_153}
    \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}