OCR MEI FP2 (Further Pure Mathematics 2) 2015 June

Question 3
View details
3 This question concerns the matrix \(\mathbf { M }\) where \(\mathbf { M } = \left( \begin{array} { r r r } 5 & - 1 & 3
4 & - 3 & - 2
2 & 1 & 4 \end{array} \right)\).
  1. Obtain the characteristic equation of \(\mathbf { M }\). Find the eigenvalues of \(\mathbf { M }\). These eigenvalues are denoted by \(\lambda _ { 1 } , \lambda _ { 2 } , \lambda _ { 3 }\), where \(\lambda _ { 1 } < \lambda _ { 2 } < \lambda _ { 3 }\).
  2. Verify that an eigenvector corresponding to \(\lambda _ { 1 }\) is \(\left( \begin{array} { r } 1
    3
    - 1 \end{array} \right)\) and that an eigenvector corresponding to \(\lambda _ { 2 }\) is \(\left( \begin{array} { r } 1
    2
    - 1 \end{array} \right)\). Find an eigenvector of the form \(\left( \begin{array} { l } a
    1
    c \end{array} \right)\) corresponding to \(\lambda _ { 3 }\).
  3. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } = \mathbf { P D P } ^ { - 1 }\). (You are not required to calculate \(\mathbf { P } ^ { - 1 }\).) Hence write down an expression for \(\mathbf { M } ^ { 4 }\) in terms of \(\mathbf { P }\) and a diagonal matrix. You should give the elements of the diagonal matrix explicitly.
  4. Use the Cayley-Hamilton theorem to obtain an expression for \(\mathbf { M } ^ { 4 }\) as a linear combination of \(\mathbf { M }\) and \(\mathbf { M } ^ { 2 }\).
Question 4
View details
4
  1. Starting with the relationship \(\cosh ^ { 2 } t - \sinh ^ { 2 } t = 1\), deduce a relationship between \(\tanh ^ { 2 } t\) and \(\operatorname { sech } ^ { 2 } t\). You are given that \(y = \operatorname { artanh } x\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 - x ^ { 2 } }\).
  3. Show, by integrating the result in part (ii), that \(y = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
  4. Show that \(\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 6 } } \frac { 1 } { 1 - 3 x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { \sqrt { 3 } } \operatorname { artanh } \frac { 1 } { 2 }\). Express this answer in logarithmic form.
  5. Use integration by parts to find \(\int \operatorname { artanh } x \mathrm {~d} x\), giving your answer in terms of logarithms. \section*{END OF QUESTION PAPER}