CAIE FP1 (Further Pure Mathematics 1) 2015 November

Question 1
View details
1 The curve \(C\) is defined parametrically by $$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi .$$ Show that, at the point with parameter \(t\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$
Question 4
View details
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\). Find
  1. the value of \(S _ { 30 }\) correct to 3 decimal places,
  2. the least value of \(N\) for which \(S _ { N } > 4.9\).
Question 5
View details
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 ,
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 . \end{aligned}$$ Write down the value of \(p\) and find the value of \(q\). Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\).
Question 6
View details
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3. Find corresponding eigenvectors. It is given that \(\left( \begin{array} { l } 0
2
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\). Find the corresponding eigenvalue. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
Question 7
View details
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11 \end{array} \right)$$ Find the rank of \(\mathbf { M }\) and a basis for the null space of T . The vector \(\left( \begin{array} { l } 1
2
3
4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
b
- 1
- 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
Question 8
View details
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant. Find the set of values of \(k\) for which \(C\) has no stationary points. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
Question 9
View details
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2$$ Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\).
Question 10
View details
10 Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$ Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
[0pt] [Question 11 is printed on the next page.]
Question 11 EITHER
View details
The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } , 2 \mathbf { j }\) and \(4 \mathbf { k }\) respectively, relative to an origin \(O\). The point \(N\) is the foot of the perpendicular from \(O\) to the plane \(A B C\). The point \(P\) on the line-segment \(O N\) is such that \(O P = \frac { 3 } { 4 } O N\). The line \(A P\) meets the plane \(O B C\) at \(Q\). Find a vector perpendicular to the plane \(A B C\) and show that the length of \(O N\) is \(\frac { 4 } { \sqrt { } ( 21 ) }\). Find the position vector of the point \(Q\). Show that the acute angle between the planes \(A B C\) and \(A B Q\) is \(\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)\).
Question 11 OR
View details
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\). Sketch \(C\). Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\). Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right) ,$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }