OCR FP2 (Further Pure Mathematics 2) 2007 June

Question 1
View details
1 The equation of a curve, in polar coordinates, is $$r = 2 \sin 3 \theta , \quad \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi .$$ Find the exact area of the region enclosed by the curve between \(\theta = 0\) and \(\theta = \frac { 1 } { 3 } \pi\).
Question 2
View details
2
  1. Given that \(\mathrm { f } ( x ) = \sin \left( 2 x + \frac { 1 } { 4 } \pi \right)\), show that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \sqrt { 2 } ( \sin 2 x + \cos 2 x )\).
  2. Hence find the first four terms of the Maclaurin series for \(\mathrm { f } ( x )\). [You may use appropriate results given in the List of Formulae.]
Question 3
View details
3 It is given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 9 x } { ( x - 1 ) \left( x ^ { 2 } + 9 \right) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence find \(\int f ( x ) \mathrm { d } x\).
Question 4
View details
4
  1. Given that $$y = x \sqrt { 1 - x ^ { 2 } } - \cos ^ { - 1 } x$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in a simplified form.
  2. Hence, or otherwise, find the exact value of \(\int _ { 0 } ^ { 1 } 2 \sqrt { 1 - x ^ { 2 } } \mathrm {~d} x\).
Question 5
View details
5 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x$$
  1. Show that, for \(n \geqslant 1\), $$I _ { n } = \mathrm { e } - n I _ { n - 1 } .$$
  2. Find \(I _ { 3 }\) in terms of e.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{dd0e327e-6125-4970-8cfa-cefcedfec06f-3_822_1373_264_386} The diagram shows the curve with equation \(y = \frac { 1 } { x ^ { 2 } }\) for \(x > 0\), together with a set of \(n\) rectangles of unit width, starting at \(x = 1\).
  1. By considering the areas of these rectangles, explain why $$\frac { 1 } { 1 ^ { 2 } } + \frac { 1 } { 2 ^ { 2 } } + \frac { 1 } { 3 ^ { 2 } } + \ldots + \frac { 1 } { n ^ { 2 } } > \int _ { 1 } ^ { n + 1 } \frac { 1 } { x ^ { 2 } } \mathrm {~d} x$$
  2. By considering the areas of another set of rectangles, explain why $$\frac { 1 } { 2 ^ { 2 } } + \frac { 1 } { 3 ^ { 2 } } + \frac { 1 } { 4 ^ { 2 } } + \ldots + \frac { 1 } { n ^ { 2 } } < \int _ { 1 } ^ { n } \frac { 1 } { x ^ { 2 } } \mathrm {~d} x$$
  3. Hence show that $$1 - \frac { 1 } { n + 1 } < \sum _ { r = 1 } ^ { n } \frac { 1 } { r ^ { 2 } } < 2 - \frac { 1 } { n }$$
  4. Hence give bounds between which \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ^ { 2 } }\) lies.
Question 7
View details
7
  1. Using the definitions of hyperbolic functions in terms of exponentials, prove that $$\cosh x \cosh y - \sinh x \sinh y = \cosh ( x - y )$$
  2. Given that \(\cosh x \cosh y = 9\) and \(\sinh x \sinh y = 8\), show that \(x = y\).
  3. Hence find the values of \(x\) and \(y\) which satisfy the equations given in part (ii), giving the answers in logarithmic form.
Question 8
View details
8 The iteration \(x _ { n + 1 } = \frac { 1 } { \left( x _ { n } + 2 \right) ^ { 2 } }\), with \(x _ { 1 } = 0.3\), is to be used to find the real root, \(\alpha\), of the equation \(x ( x + 2 ) ^ { 2 } = 1\).
  1. Find the value of \(\alpha\), correct to 4 decimal places. You should show the result of each step of the iteration process.
  2. Given that \(\mathrm { f } ( x ) = \frac { 1 } { ( x + 2 ) ^ { 2 } }\), show that \(\mathrm { f } ^ { \prime } ( \alpha ) \neq 0\).
  3. The difference, \(\delta _ { r }\), between successive approximations is given by \(\delta _ { r } = x _ { r + 1 } - x _ { r }\). Find \(\delta _ { 3 }\).
  4. Given that \(\delta _ { r + 1 } \approx \mathrm { f } ^ { \prime } ( \alpha ) \delta _ { r }\), find an estimate for \(\delta _ { 10 }\).
Question 9
View details
9 It is given that the equation of a curve is $$y = \frac { x ^ { 2 } - 2 a x } { x - a }$$ where \(a\) is a positive constant.
  1. Find the equations of the asymptotes of the curve.
  2. Show that \(y\) takes all real values.
  3. Sketch the curve \(y = \frac { x ^ { 2 } - 2 a x } { x - a }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }