9 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } - 3 & - 4 & 1
2 & 1 & k
7 & - 1 & - 1 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r c } - 4 & - 5 & 11
- 19 & - 4 & - 7
- 9 & - 31 & 2 - k \end{array} \right)\) and \(\mathbf { A B } = \left( \begin{array} { c c c } 79 & 0 & - 3 - k
- 9 k - 27 & - 31 k - 14 & q
p & 0 & 82 + k \end{array} \right)\) where \(p\) and \(q\) are to be determined.
- Show that \(p = 0\) and \(q = 15 + 2 k - k ^ { 2 }\).
It is now given that \(k = - 3\).
- Find \(\mathbf { A B }\) and hence write down the inverse matrix \(\mathbf { A } ^ { - 1 }\).
- Use a matrix method to find the values of \(x , y\) and \(z\) that satisfy the equation \(\mathbf { A } \left( \begin{array} { l } x
y
z \end{array} \right) = \left( \begin{array} { r } 14
- 23
9 \end{array} \right)\).
\section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE}